
AFRL-VS-PS- AFRL-VS-PS-
TR-2005

-1045 TR-2005-1045

RADIATION HARDENED LOW POWER DIGITAL
SIGNAL PROCESSOR

Michael E. Fleming, William Spiller, and Mike Yee

Digital Signal Processing
Architectures Inc.
10306 NE 85th Circle
Vancouver, WA 98662

15 April 2005

Final Report

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

 AIR FORCE RESEARCH LABORATORY
Space Vehicles Directorate
3550 Aberdeen Ave SE
AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

AFRL-VS-PS-TR-2005-1045 DTIC COPY

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data,
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report has been reviewed by the Public Affairs Office and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public,
including foreign nationals.

If you change your address, wish to be removed from this mailing list, or your organization no
longer employs the addressee, please notify AFRL/VSSE, 3550 Aberdeen Ave SE, Kirtland
AFB, NM 87117-5776.

Do not return copies of this report unless contractual obligations or notice on a specific
document requires its return.

This report has been approved for publication.

//signed//
CASEY D. MCCOY, 2Lt, USAF
Project Manager

//signed//
KIRT S. MOSER, DR-IV
Chief, Spacecraft Technology Division

 i

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
15/04/2005

2. REPORT TYPE
Final Report

3. DATES COVERED (From - To)
15/04/2004 to 15/04/2005

4. TITLE AND SUBTITLE
Radiation Hardened Low Power Digital Signal Processor

5a. CONTRACT NUMBER
FA9453-04-M-0097

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
65502F

6. AUTHOR(S)
Michael E. Fleming, William (Kelly) Spiller, and Mike Yee

5d. PROJECT NUMBER
3005

5e. TASK NUMBER
VP

5f. WORK UNIT NUMBER
HD

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

Digital Signal Processing
Architectures Inc.
10306 NE 85 Circle th

Vancouver, WA 98662

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Research Laboratory
Space Vehicles Directorate
3550 Aberdeen Ave., SE 11. SPONSOR/MONITOR’S REPORT
Kirtland AFB, NM 87117-5776 NUMBER(S)
 AFRL-VS-PS-TR-2005-1045
12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Report developed under SBIR contract for topic AF04-020.

This program develops a unique digital signal processing chip architecture based around four on-chip elements; a large multi-use memory,
a RISC microprocessor, a fast FFT based vector processor, and a re-configurable Field Programmable Gate Array (FPGA).

These four elements are synchronized and blended on-chip to form a powerful signal and image processor. This processor, called the
Transform Concentric Signal Processor (TCSP), meets and exceeds many of the current DoD on-board processing requirements.

Scalability is a major strength of the TCSP, multiple TCSP chips can be cascaded on a board, or in an MCM, to efficiently address even the
most demanding signal and image processing requirements.

A significant windfall of this approach is a substantial reduction in software Engineering due to the TCSP’s advanced data flow, ultra low
latency, and high radix techniques.
15. SUBJECT TERMS
SBIR Report, DSP, FFT, polyphase, radar, image processing, digital filtering, CFAR, matched filtering, convolution, pattern recognition
16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Lt. Casey McCoy

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Unlimited

60

19b. TELEPHONE NUMBER (include area
code)
(505) 846-5811

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

ii

Table of Contents

AF04-020 Solicitation, Phase 1 Objective List

Page 2

Page 6

Page 7

Page 8

Page 11

Page 20

Page 21

Page 22

Page 27

Page 25

Page 28

Page 45

Page 48

Page 1

Phase 1 Objective (1)

Phase 1 Objective (2)

Phase 1 Objective (3)

Phase 1 Objective (4)

Phase 1 Objective (5)

Phase 1 Objective (6)

Phase 1 Objective (7)

Phase 1 Objective (8)

Phase 1 Objective (9)

Phase 1 Objective (10)

Phase 1 Objective (11)

Phase 1 Objective (12)

Phase 1 Objective (13)

Page 51Risk Matrix

AF04-020

iii

List of Figures

AF04-020

iv

Figure 1.0 Transform Concentric Signal Processor (TCSP) Program

Figure 2.0 TCSP Size and Placement

Figure 3.0 Motorola G6 Microprocessor

Figure 4.0 Odd Radix 3-D image Processing Impact

Figure 5.0 Six TCSP I/O Chip Ports and Data Flow

Figure 6.0 Scalable Core DSP Module

Figure 7.0 Cascaded Core Modules

Figure 8.0 Phase 1 Data Flow

Figure 9.0 Phase 2 Data Flow

Figure 10.0 Four TCSP's Back to Back Data Flow

Figure 11.0 Same Instruction Multiple Data (SIMD)

Figure 12.0 Direct Input 1

Figure 13.0 Direct Input 2

Figure 14.0 Cascade (Phase 1)

Figure 15.0 Cascade (Phase 2)

Figure 16.0 Double Buf Coef 1 (Phase 1)

Figure 17.0 Double Buf Coef 1 (Phase 2)

Figure 18.0 Double Buf Coef 2 (Phase 1)

Figure 19.0 Double Buf Coef 2 (Phase 2)

Figure 20.0 Double Buf Coef 2 (Phase 3)

Figure 21.0 Double Buf Coef 2 (Phase 4)

Figure 22.0 Double Buf IO (Phase 1)

Figure 23.0 Double Buf IO (Phase 2)

Figure 24.0 Internal Double Buf (Phase 1)

Figure 25.0 Internal Double Buf (Phase 2)

Figure 26.0 ARM Core sizes

Figure 27.0 40-bit Block Floating Point PSD (32-bit Binary + 8 bit Exponent)

Figure 28.0 IEEE 32-bit Floating Point PSD (40-bit Binary + 8 bit Exponent Converted)

Figure 29.0 16-bit Block Floating Point PSD

Figure 30.0 24-bit Block Floating Point PSD

Figure 1.1 Transform Concentric Signal Processor () Block DiagramTCSP

2

4

5

5

6

7

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

21

22

22

23

23

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

List of Figures (cont.)

AF04-020

v

Figure 31.0 Weak Signal Search

Figure 32.0 Weak Signal Search

Figure 33.0 on chip Coefficient Generator (CG)

Figure 35.0 Current RHDSP24 Development Tools

Figure 36.0 1024 Point FFT with no Window

Figure 37.0 1024 Point FFT with Hamming Window

Figure 38.0 FFT with Remez Filter coefficients in place of the window function

Figure 39.0 8K Channel Polyphase Digital Filter Example

Figure 40.0 Doppler Processing using the Short Time Fourier Transform (STFT)

Figure 41.0 Doppler Processing using the STFT - Results

Figure 42.0 Illustration of Frequency Domain Pulse Compression

Figure 43.0 Radar Display

Figure 44.0 CFAR Algorithm

Figure 45.0 Realtime Fast Convolution Filter Output

Figure 46.0 Filter Output on Top Of Input Signal

Figure 47.0 Subtracted Signals

Figure 48.0 Two dimensional CFAR Realtime Filter

Figure 49.0 Sampled Image

Figure 50.0 Image PSD

Figure 51.0 Inverse FFT Resulting Image

Figure 52.0 Blurred Image

Figure 53.0 Point Spread Function PSF

Figure 54.0 Restored Image and Restored PSF

Figure 55.0 Newly Created Array

Figure 56.0 Deblurred Image and its PSF

Figure 57.0 Eight Point Complex FFT

Figure 58.0 Pipelined Logic

2Figure 59.0 N vs N(Log (N))2

Figure 60.0 Free Window Multiply and Free Coefficient Multiply on Fast Convolution

Figure 61.0 Risk Matrix

Figure 34.0 Compression Inputs

24

24

25

26

27

28

28

29

30

31

33

34

35

35

36

36

37

38

39

39

40

45

45

45

46

46

48

49

49

50

51

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

 vi

AF04-020 TITLE: Radiation Hardened, Low Power Digital Signal Processors
TECHNOLOGY AREAS: Information Systems, Sensors, Electronics, Battlespace
OBJECTIVE: Develop a low cost and low power Digital Signal Processor (DSP) architecture for use with high
performance space applications.

PHASE I: Identify a highly efficient, hardened architecture. Simulate and model performance effects of the
processor in different environments. Model the efficiency and throughput characteristics with radar processing
algorithms, including Space Time Adaptive Processing (STAP) and Space Frequency Adaptive Processing (SFAP).
Using state-of-the-art, space qualified (or qualifiable) integrated circuit processors, develop a scalable and
programmable DSP element architecture. A large amount of on-chip memory is desirable for achieving highly
efficient, backend signal processing (e.g., radar signal processing). Future ISR systems will require in excess of 5
GFLOPS/s (32-bit floating point arithmetic) per Watt for functions like STAP, Doppler processing, image formation,
Constant False Alarm Rate (CFAR), and target position estimation.

1. Address market needs through on going customer interaction to produce a sound implementation maximizing
synergy between the commercial, military, and space requirements. Illustrate the capabilities of the proposed
architecture for currently available and soon to be available rad hard chip geometries.

2. Investigate new algorithms such as odd radix FFT and multi-tap FIR functions for the proposed architecture that
will maintain its software heritage.

3. Determine whether the current 5 port, 24-bit two’s complement complex I/O bus structure is sufficient, and if there
needs to be more ports or additional types of ports.

4. Maintain the high throughput, latency insensitive approach across all the proposed hardware and software
additions.

5. Determine how much memory can be included on chip for the proposed architecture, and how it should be best
sectionalized, particularly for adaptive algorithms.

6. Determine whether it is technically possible and within the abilities of DSP Architectures Inc. to support adding
FPGA capability on board the proposed chip.

7

8. Measure the impact of increasing resolution. This includes the cost of a dedicated fixed point to and from IEEE
floating point conversion and moving the architecture from 24-bits complex binary to 32-bits complex binary.
Determine whether full IEEE floating point or boundary conversion is needed for the target set of applications and
whether it can be added effectively to the TCSP chip.

9. In an effort to reduce overall application chip count, investigate moving memory management capability onto the
proposed chip (in the form of the MMU24) along with on-chip twiddle factor generation.

10. Determine whether the entire chip and/or board system should be simulated with an integrated approach and/or
what needs to be done to tie multiple vendor IP support tools together to form a whole.

11. Investigate how efficiently applications such as polyphase channelization, SAR radar, GMTI radar, wideband
communications, and vision systems, can be performed by the proposed architecture.

12. Determine how well the proposed architecture will scale when applied to larger applications. Determine whether
it will offer the economy of scale necessary to reduce the power and mass of future spacecraft
reducing the ongoing cost of point solution ASICs.

13. Investigate chip design techniques and tools that are good candidates to allow the proposed architecture to
achieve the maximum performance/watt.

. Investigate an on-chip microprocessor, how capable, and what on chip microprocessor. Determine the software
advantages of different on chip microprocessors and how much on-chip microprocessor memory is possible.

Phase 1 Objectives:

AF04-020

1

DSPA addressed this new chip architecture by reviewing all of its commercial, military, and space marketing
information for the last nine years.

Additionally, DSPA consulted, in detail, with our OEM board manufactures as to what they would most like to see in a
high end digital signal processing chip architecture.

Consistently at the forefront of these requirements were a programmable FFT based DSP, a large on chip flexible
data memory, re-configurable fast FPGA logic, and a standard RISC microprocessor for maintaining an ongoing
portable software library.

As shown in Figure 1.0, this program integrates the four element technologies of a innovative vector processor, a fast
reconfigurable FPGA fabric, a standard RISC microprocessor, and a large internal memory to form, what we believe
to be, a uniquely capable chip.

Since the architecture presented here is centered around a COTS chip implementation of the FFT, that has been
refined for the last 20 years, it is named the Transform Concentric Signal Processor ().

As will be discussed, foremost in the design of this chip architecture are the requirements of low power and
scalability. The TCSP employs several techniques to minimize power dissipation and maximize the sustained sample
rate of demanding high end real time signal and image processing. The rad hard TCSP hardware and software
scales from stand alone "black box" applications to the most demanding multi-processor applications in the industry.

A byproduct of the on chip vector processor and advanced data flow techniques is a substantial reduction in software
engineering.

TCSP

TCSP Program TCSP Program ResultsTCSP Element Technologies

High Radix Vector Processing

Embedded Programmable Logic

 ARM RISC

Embedded Large 8 Mega-Bit SRAM

COTS Compatible
Realtime DSP
Application Library

Design, Fab, Test and
Integrate the Transform
Concentric Signal
Processor (TCSP Chip)

Research, Develop and
Characterize the Four
Element Technologies
Needed for On-board
Signal & Image
Processing

Apply TCSP to Targeted
DoD and Commercial
Apps

Demonstrate Initial
TCSP Software Tool
Set

Verified Reconfigurable
Fault Tolerant Apps

Balanced Mix of
Commercial and
Military Apps

Verified Substantial
Reduction in Software
Engineering

100 to 1000X
Improvement in
Reconfiguration Time
and Power Reduction
for Military and Space
Apps

Figure 1.0 Transform Concentric Signal Processor (TCSP) Program

Phase 1 Objective (1.) Address market needs through on going customer interaction to produce a sound
 implementation maximizing synergy between the commercial, military, and space requirements. Illustrate the
capabilities of the proposed architecture for currently available and soon to be available rad hard chip geometries.

64 64

48

Memory A

Memory B

Scalable DSP Logic

XY

SU

 BT
U

P
T

U
O

SU

 BT
U

P
NI

Y

S
U

 BT
U

P
N I

X

32

32

32

3232

32

32

32

32

32 32

3232

32 32

32

32

32

32

32

32

32

32

32

A B

C

DE

F

TCSP

MMU

MMU

MMU

MMU

MMU

MMU

32

32

32

32

32

32

Initiate Fast and
Portable Realtime
DSP HW/SW
Platform

AF04-020

2

Extended
Instructions

0.15 micron rad hard, ultra low power SOI process, over 64-bits of internal precision, >>>10 GigaFlop/Watt

Fully parallel FFT's, matrix math, complex math, FIRs, complex magnitude, etc. optimized in hardware
Over 8 Million bits of multi-use SRAM -- I/O, memory, ARM, DSP, and rFPGA fabric all run concurrently

Advanced rFPGA fabric targeted to contain equivalent of 200K useable ASIC gates, fast reconfiguration

Six on-chip high end, 32-bit address range, DSP Memory Management Units (MMUs), shadow registered
for programming while in use. On chip twiddle and coefficient generator uses advanced compression

Real only and complex 32-bit IEEE floating point, 32-bit, 24-bit,16-bit, and 8-bit integer data types supported
40-bit automatic block floating point supported for extreme precision applications

ARM for portable high level software, fault tolerance management. Arm instructions extended by rFPGA

Ultra power optimized Radix-2, Radix-3, Radix-4, Radix-5, Radix-8, Radix-16, Radix-32, Radix-64, Radix-
128, and Radix-256 on chip butterfly structures. Future TCSP chips will scale to Radix-1024 and beyond

Fully static 300/500 MHz clock speed target, if final chip faster, everything scales up directly.
If clock on the board product is lowered, TCSP power dissipation lowered by same amount

Engineered to be dynamically re-programmed by on chip ARM for fast changing application modes

Candidate to be the "standard" Space scalable DSP. Very low latency allows multiple TCSP's to easily cascade
on a board or MCM. Two TCSP's cascaded with no external components performs a 32-bit, 64K complex FFT
at 300 to 500 MSPS, 16-bit at 1 GigaHz, 16-bit and real only at 2 GigaHz. Three TCSP's back to back will do a
16 Million point complex FFT (or 4K x 4K 2-D) at a 2 GigaHz sample rate, or 4 GSPS if data is 8-bit.

Vector processing approach achieves a substantial reduction in software engineering. Comprehensive DSP
data flow communication scheme distributed throughout the chip, maximizes sustainable throughput.

The TCSP Chip Offers These Highlights:

AF04-020

3

Targeted 32-bit binary sustained sample rate of 500 MHz. complex

Targeted 32-bit IEEE 754 floating point sustained sample rate of 500 MHz. complex

Targeted 24-bit binary sustained sample rate of 500 MHz. complex

Targeted 16-bit binary sustained sample rate of 1000 MHz. complex

Targeted 8-bit binary sustained sample rate of 2000 MHz. complex

Targeted 32-bit binary sustained sample rate of 1000 MHz. real

Targeted 32-bit IEEE 754 floating point sustained sample rate of 1000 MHz. real

Targeted 24-bit binary sustained sample rate of 1000 MHz. real

Targeted 16-bit binary sustained sample rate of 2000 MHz. real

Targeted 8-bit binary sustained sample rate of 4000 MHz. real

All fixed point modes supported by no overhead
32-bit binary + 8-bit exponent, 24-bit binary + 8-bit exponent, 16-bit binary + 8-bit exponent
and 8-bit binary + 8-bit exponent

block floating point:

Final processor could achieve greater than 32-bit binary precision, decision could be made at layout

Phase 1 Objective (1.) Address market needs through on going customer interaction to produce a sound
 implementation maximizing synergy between the commercial, military, and space requirements. Illustrate the
capabilities of the proposed architecture for currently available and soon to be available rad hard chip geometries.

AF04-020

Figure 1.1 Transform Concentric Signal Processor () Block DiagramTCSP

3
2

3
2

M
o

d
u

le
0

co
e
f

re
a
l

m
e
m

o
ry

re
a
l

lo
g
ic

co
e
ff
 b

u
s

im
a
g
in

a
ry

lo
g
ic

d
a
ta

re
a
l

m
e
m

o
ry

co
e
f

im
a
g
in

a
ry

m
e
m

o
ry

d
a
ta

im
a
g
in

a
ry

m
e
m

o
ry

co
e
f

re
a
l

m
e
m

o
ry

re
a
l

lo
g
ic

im
a
g
in

a
ry

lo
g
ic

d
a
ta

re
a
l

m
e
m

o
ry

co
e
f

im
a
g
in

a
ry

m
e
m

o
ry

d
a
ta

im
a
g
in

a
ry

m
e
m

o
ry

co
e
f

re
a
l

m
e
m

o
ry

co
e
f

im
a
g
in

a
ry

m
e
m

o
ry

M
o

d
u

le
1

co
e
ff
 b

u
s

MEMORY A

MEMORY B

B
U

F

BUF

B
U

F

B
U

F
B

U
F

B
U

F

M
U

X

M
U

X

MUX

BUF

B
U

F
B

U
F

MUX

MUXMUX

MUXMUX

P
o

rt
 A

Port B

P
o

rt
 C

P
o

rt
 D

Port EO
u

tp
u

t
B

u
s

In
p

u
t

B
u

s
X

In
p

u
t

B
u

s
Y

6
4

6
4

6
4

6
4

6
4

6
4

6
4

6
4

6
4

6
4

6
4

6
4

6
4 6
4

6
4

6
4

6
4

6
4

3
2

3
2

3
2

3
2

6
4

s

E

s

E

E

E

E

E

E

E

s

s

E

s
s

s

s

D
a

ta
 F

lo
w

 L
o

g
ic

M
o

d
u

le
2

co
e
f

re
a
l

m
e
m

o
ry

re
a
l

lo
g
ic

co
e
ff
 b

u
s

im
a
g
in

a
ry

lo
g
ic

d
a
ta

re
a
l

m
e
m

o
ry

co
e
f

im
a
g
in

a
ry

m
e
m

o
ry

d
a
ta

im
a
g
in

a
ry

m
e
m

o
ry

co
e
f

re
a
l

m
e
m

o
ry

re
a
l

lo
g
ic

im
a
g
in

a
ry

lo
g
ic

d
a
ta

re
a
l

m
e
m

o
ry

co
e
f

im
a
g
in

a
ry

m
e
m

o
ry

d
a
ta

im
a
g
in

a
ry

m
e
m

o
ry

M
o

d
u

le
4

co
e
f

re
a
l

m
e
m

o
ry

re
a
l

lo
g
ic

im
a
g
in

a
ry

lo
g
ic

d
a
ta

re
a
l

m
e
m

o
ry

co
e
f

im
a
g
in

a
ry

m
e
m

o
ry

d
a
ta

im
a
g
in

a
ry

m
e
m

o
ry

co
e
f

re
a
l

m
e
m

o
ry

re
a
l

lo
g
ic

im
a
g
in

a
ry

lo
g
ic

d
a
ta

re
a
l

m
e
m

o
ry

co
e
f

im
a
g
in

a
ry

m
e
m

o
ry

d
a
ta

im
a
g
in

a
ry

m
e
m

o
ry

d
a
ta

re
a
l

m
e
m

o
ry

d
a
ta

im
a
g
in

a
ry

m
e
m

o
ry

M
o

d
u

le
3

M
o

d
u

le
5

Y

X

co
e
ff
 b

u
s

co
e
ff
 b

u
s

co
e
ff
 b

u
s

64K x 64

IE
E

E
F

lo
a

t
P

t.
 L

o
g

ic

MMUE

M
M

U
C

M
M

U
D

MMUB

M
M

U
S3

2

3
2

3
2

3
2

3
2

F
P

G
A

C
ir
cu

itr
y

S
ch

e
d

u
le

r/
C

o
n

tr
o

lle
r

L
o

g
ic

A
R

M
C

o
re +

M
e

m
o

ry

C
o
n
tr

o
l

C
o
n

tr
o
l

C
o

n
tr

o
l

C
o

n
tr

o
l

C
o

n
tr

o
l

C
o

n
tr

o
l

C
o
n
tr

o
l

C
o

n
tr

o
l

C
o
n

tr
o
l

C
o

n
tr

o
l

C
o

n
tr

o
l

C
o

e
ff
ic

ie
n

t
G

e
n

e
ra

to
r

C
o
n
tr

o
l

6
4

co
e
f

re
a
l

m
e
m

o
ry

re
a
l

lo
g
ic

im
a
g
in

a
ry

lo
g
ic

co
e
f

im
a
g
in

a
ry

m
e
m

o
ry

M
o

d
u

le
N

co
e
ff
 b

u
s

C
o

n
tr

o
l

6
4

6
4

3
2

3
2

6
4

Y X

6
4

6
4

C
o

n
tr

o
l

C
o

n
tr

o
l

C
o

n
tr

o
l

C
o

n
tr

o
l

C
o

n
tr

o
l

64K x 64

B
U

F

M
U

X

M
U

X

P
o

rt
 F

 (
LV

D
S

)

6
4

6
4

6
4

s

E

s

M
M

U
A3

2

C
o
n
tr

o
l

XY

U
n

iq
u

e
 s

ix
 p

o
rt

 c
h

ip
 r

in
g

 b
u

s,
 e

q
u

iv
a

le
n

t
to

a
 m

a
ss

iv
e

 o
n

 c
h

ip
 c

ro
ss

b
a

r
ci

rc
u

it

D
S

P
D

S
P

D
S

P
D

S
P

D
S

P

D
S

P
D

S
P

4

Figure 1.1 is a high
level diagram of the
TCSP chip. The
memory, rFPGA
fabric, and ARM
"drop-in" cores are
shaded for
identification.

TCSP
16K x 64 BlocksDSP Modules

rFPGA Array
ARM

Memory ARM

Figure 2.0 TCSP Size and Placement

6
5
0

M
I

L
S

L

Coefficient Generator

Figure 3.0 Motorola G6 Microprocessor

In the era of billion transistor chips,
one of the most significant challeges
of an aggressive architecture is the
efficient communications of all the on
chip functional blocks.

Figure 2.0 shows the major building
blocks of the TCSP's selected
architecture.

It is a major task of this program to
engineer this interconnect across a
wide range of DSP applications and
achieve the necessary "economies of
scale" needed to propel the TCSP into
the Military and commercial
mainstream.

As an example of the significance of the
on chip interconnect, see Figure 3.0,
Motorola's sixth generation PowerPC
processor, the G6.
The interconnect on this eight metal
layer chip(the blue area), takes up at
least 40% of the silicon. Interconnect
dissipates power.

The TCSP architecture presented here
addresses the interconnect issue not
only within the chip, but within multiple
TCSP chips on a board.

One of Six MMU's

AF04-020

5

Coefficient
Compression
Memory

Phase 1 Objective (1.) Address market needs through on going customer interaction to produce a sound
 implementation maximizing synergy between the commercial, military, and space requirements. Illustrate the
capabilities of the proposed architecture for currently available and soon to be available rad hard chip geometries.

The proposed Vector Unit data path was designed to include very high radix structures, including odd radix-3 and
radix-5 functionality. This was extensively simulated to insure compatibility with the other high level data path
functions and the proposed software tool set.

Additionally, the proposed on-chip Memory Management Units (MMU) had to be engineered to include the new
memory address generation and management functions to insure utility of all possible mixed and split radices.

The radix-3 and radix-5 give the TCSP additional horsepower for more efficient applications.

The proposed
Vector Unit
was also
engineered to
perform
flexible FIR
functions.
Although the
vast majority
of image and
signal FIR
applications
can be
performed with
the on chip
rFPGA fabric,
the Vector Unit
FIR functions
were straight
forward to
implement.
These FIR
functions can
be used to
update
coefficients by
performing
extensive, high
precision (32+ bits), matrix math operations.

To illustrate the value of the odd radices. Consider the three dimensional Figure 4.0. If there are 1280 pixels in all
three dimensions then we are dealing with 1280x1280x1280 = 2,097,152,000 values.
If a DSP processor does not have a radix 5 function (1280= 256 x 5) then each direction would have to be zero
padded out to the next power of two, i.e. 2048 (256 x 8).
Now, we have 2048x2048x2048=8,589,934,592 values to process, even though we are only interested in
2,097,152,000 values. Since, the proposed TCSP is a synchronous fully static processor, it would do this required
processing in less than one quarter of the time, i.e. 2,097,152,000 divided by 8,589,934,592, a very significant
reduction in processing time. If the clock rate is reduced, a 75% reduction in power dissipation would be achieved.

1280 x 1280 x 1280 = 2,097,152,000

VS

2048 x 2048 x 2048 = 8,589,934,592

8,589,934,592

2,097,152,000
= 24.4%

Clocks:

1280

1280

Figure 4.0 Odd Radix 3-D image Processing Impact

1280 Changing Images

Phase 1 Objective (2.) Investigate new algorithms such as odd radix FFT and multi-tap FIR functions for the
proposed architecture that will maintain its software heritage.

AF04-020

6

After many application simulations, including several data intensive multi-processor target applications, it was
determined that an additional complex port would serve the board and MCM designers well.
Additionally at least one port should be LVDS compatible

All six ports will be 32-bit complex (32-bits real + 32-bits imaginary) or double as 64-bit ports.

As illustrated in Figure 5.0, consider a large data intensive (4 Giga word) board level application with continuous
data coming into memory A, as addressed by the MMU on port A, while the TCSP chip addresses and uses the data
already stored in memory E.

At the same time coefficients are being addressed and used from memory D, while the coefficients are being
addressed and updated in memory F. (The on chip FPGA fabric could be modifying the coefficients.)

And finally, at the same time the output memory B is being addressed for the data out, while memory C is being
addressed for storing the results from the TCSP.

On the next frame of data, all the memories will trade tasks, the output will come from C memory, while the results
from the TCSP will be stored in the B memory, etc.

In this manner, all inputs and outputs are fully addressed and double buffered, thereby allowing continuous real time
processing.

This data flow is dynamic and controlled from the on chip scheduler, as commanded. For applications that only need
to use internal on chip memory these ports can be powered down.

At the board level, flexible I/O such as this facilitates easy cascading of multiple TCSP chips and eliminates external
components that multiply in number as more TCSP's are used.

Phase 1 Objective (3.) Determine whether the current 5 port, 24-bit two’s complement complex I/O bus structure
 is sufficient, and if there needs to be more ports or additional types of ports.

64 64

Memory A

Memory B

Scalable DSP Logic

XY

SUB T
U

P
T

U
O

S
U

B T
U

P
NI

Y
S

U
B T

U
P

NI
X

32

32

32

3232

32

32

32

32

32 32

3232

32 32

32

32

32

32

32

32

32

32

32

A B

C

D

E

F

TCSP

MMU

MMU

MMU

MMU

MMU

MMU

Data In Data Out

Filter
Coefficients In

Up to 4 Giga Words Up to 4 Giga Words

Up to 4 Giga WordsUp to 4 Giga Words

Up to 4 Giga Words Up to 4 Giga Words

64

64

64
32

32

32

32

32

32

Figure 5.0 Six TCSP I/O Chip Ports and Data Flow

xt
E

ernal

eM
mory

E
xt

e
rn

a
l

M
e
m

o
ry

E
t

n l
x er am

Me
ory

x ern
E

t
al

Me
r

mo y

E
xt

e
rn

a
l

M
e
m

o
ry

a

Extern
l

M
m

r
e

o y

64

AF04-020

7

DSPA has engineered the TCSP to have a unique latency insensitive approach to the synchronization of the four
element technologies:

- Vector unit
- Reconfigurable FPGA fabric
- ARM microprocessor
- 8 Megabit SRAM

The Vector unit illustrated is an efficiently pipelined processor that uses low latency techniques to perform the
following functions:

VECTOR FUNCTIONS:

Vector Add

Performs a binary addition operation with the input data and the coefficient data.

Vector Subtract

Performs a binary subtraction operation with the input data and the coefficient data.

Vector Multiply

Performs a fractional two's complement multiplication operation with the input data and the coefficient data.

Vector Multiply/Accumulate

Performs a fractional two's complement multiplication and accumulation of the result operation with the input data
and the coefficient data.

COMPLEX MATH FUNCTIONS:

Complex Add

Performs a complex binary add operation with the input data and the coefficient data.

Complex Subtract

Performs a complex binary add operation with the input data and the coefficient data.

Complex Multiply

Performs a fractional two's complement complex multiplication operation with the input data and the coefficient data.

Complex Multiply/Accumulate

Performs a fractional two's complement complex multiplication and complex accumulation of the result operation
with the input data and the coefficient data

Complex Magnitude

Performs a fractional two's complement square of the real input data added to the fractional two's complement
square of the imaginary input data.

Phase 1 Objective (4.) Maintain the high throughput, latency insensitive approach across all the proposed
hardware and software additions.

AF04-020

8

Phase 1 Objective (4.) Maintain the high throughput, latency insensitive approach across all the proposed
 hardware and software additions. (Cont.)

DSP FUNCTIONS:

Radix 2 Butterfly

Performs a radix 2 based butterfly operation on the complex input data.

Radix 3 Butterfly

Performs a radix 3 based butterfly operation on the complex input data.

Radix 4 Butterfly

Performs a radix 4 based butterfly operation on complex input data.

Radix 5 Butterfly

Performs a radix 5 based butterfly operation on the complex input data.

Radix 8 Butterfly

Performs a radix 8 based butterfly operation on complex input data.

Radix16 Butterfly

Performs a radix 16 based butterfly operation on complex input data

Radix 32 Butterfly

Performs a radix 32 based butterfly operation on complex input data

Radix 64 Butterfly

Performs a radix 64 based butterfly operation on complex input data

Radix 128 Butterfly

Performs a radix 128 based butterfly operation on complex input data

Radix 256 Butterfly

Performs a radix 256 based butterfly operation on complex input data

Also multiplies the incoming data by a window function.

REAL ONLY FFT FUNCTIONS:

Real Only FFT-Double Length

Performs a double length FFT if the input data was real only, i.e. performing a 256 point complex FFT yields a 512
point real result.

Real Only FFT- Two at a Time

Performs dual FFT's if the input data was real only, i.e. performing a 256 point complex FFT yields two seperate 256
point real results.

LOGIC FUNCTIONS:

AND

Performs a logical AND of the input data with the coefficient data.

OR

Performs a logical OR of the input data with the coefficient data.

XOR

Performs a logical XOR of the input data with the coefficient data.

USER DEFINED FUNCTIONS:

User Defined

When combined with the rFPGA and ARM, several proprietary user specific instructions may be defined.

AF04-020

9

Phase 1 Objective (4.) Maintain the high throughput, latency insensitive approach across all the proposed
 hardware and software additions. (Cont.)

coef conjugating
coef complementing

coef scaling
data conjugating

data complementing
data scaling

complex dot product
complex multiply

mixed radix FFT’s
weighted overlap add (WOA)

complex data overlaping
complex data folding
fast cosine transform

fast sine transform
real only two at a time FFT

real only double length FFT
zero filling

zero padding
decimation

interpolation

Modulex

coef
real

memory

real
logic

imaginary
logic

data
real

memory

coef
imaginary
memory

data
imaginary
memory

coeff bus

DSP Core

add
substract
multiply
AND
OR
NOR
NAND
radix-2
radix-3
radix-4
radix-5
radix-8
radix-16
radix-32
radix-64
radix-128
radix-256
data stacking
data swapping
coeff swapping
data folding

Modulex

coef
real

memory

real
logic

imaginary
logic

data
real

memory

coef
imaginary
memory

data
imaginary
memory

coeff bus

IEEE Floating Point Mode
32-bit data type
16-bit data type
8-bit data type
real and complex modes
block floating point calculation

etc.

coef real
coef imaginary

data real

data imaginary

coef
real

memory

real
logic

imaginary
logic

data
real

memory

coef
imaginary
memory

data
imaginary
memory

coef
real

memory

coef
real

memory

coef
real

memory

real
logic

real
logic

imaginary
logic

imaginary
logic

data
real

memory

data
real

memory

coef
imaginary
memory

coef
imaginary
memory

coef
imaginary
memory

data
imaginary
memory

data
imaginary
memory

Module0Module1Modulen

coeff buscoeff bus coeff bus

32

coef
real

memory

real
logic

imaginary
logic

data
real

memory

coef
imaginary
memory

data
imaginary
memory

coef
real

memory

coef
real

memory

coef
real

memory

real
logic

real
logic

imaginary
logic

imaginary
logic

data
real

memory

data
real

memory

coef
imaginary
memory

coef
imaginary
memory

coef
imaginary
memory

data
imaginary
memory

data
imaginary
memory

Module0Module1Modulen

coeff buscoeff bus coeff bus

Figure 7.0 Cascaded Core Modules

Figure 6.0 Scalable Core DSP Module

The base DSP step and repeat core module is illustrated in Figure 6.0. Considerable engineering over the last two
decades has been put into making it scalable and comprehensive. This core is readily assembled from just a couple
dozen library cells and is fully static. Internal to this core are the TCSP's advanced power optimizing techniques.

Figure 7.0 shows how the DSP core module stacks for increased functionality. This core stacks both functionally and
physically during chip layout. As chip geometries shrink below 0.1 micron, more and more of these step and repeat
modules can be easily laid down. These stackable modules also maintain their software compatibility with future
generations.

32

32

32

AF04-020

10

Phase 1 Objective (5.) Determine how much memory can be included on chip for the proposed architecture, and
 how it should be best sectionalized, particularly for adaptive algorithms.

One of the driving concepts for utilizing the
TCSP's on chip 8 megabit memory is
presented here.

Consider a board or MCM with three TCSP's
cascaded together as pictured in Figure 8.0.

Let's say it's a surveillance application and the
focal plane array is 4K x 4K elements. We
need to transform this 2-D picture using a 16
million point 1-D FFT.

The TCSP has a radix-256 FFT butterfly
function, therefore three of these butterflies
performed back to back is 256x256x256=16
million points.

Since 256x256=64K, we need 64K words
within the first TCSP chip to store the results
of two hundred and fifty-six radix-256
butterflies. (reference
www.dsparchitectures.com/new_page_applica
tions.htm) Comprehensive FFT App note.

When the first chip's 64K buffer is full, the
second chip in the cascade can perform it's
two hundred and fifty-six radix-256 butterflies
and store the results in the external 16 million
point memory. This is repeated until the 16
million point external memory is full, then the
third TCSP chip can perform 64K radix-256
butterflies on the data.

Figure 9.0 shows the second phase of this
process. This process is bubble free and it is
continuous, since the internal 64K is double
buffered.

If the three chips are all clocked at 500 MHz,
then the input and output sample rate will be
500 MHz complex!

If the data is real only, then this rate doubles to
1 Giga Hertz.
If the data type is 16-bits (or 16-bits plus 8-bits
of block floating point), this rates doubles
again to 2 Giga Hertz.

As geometries shrink, the next step would be radix-512, requiring 512x512=256K double buffered, or 32 mega bits.

Note also, that the internal Coefficient Generator (CG) generates all the necessary twiddle factors on chip. Also, the
16 million words of double buffered external memory is managed by the on chip MMU's.

The double buffered 64K words (or 128K words) in both the second and third TCSP's were not used and can be
used by the on chip rFPGA fabric or ARM processors to do other things concurrently. Such as I/O fabric protocol,
adaptive filtering, compression, deconvolution, gain adjustments, off axis compensation, colorizing, etc.

After spending some time with the Honeywell and BAE Engineers we believe the 8 million bit memory is achievable.

AF04-020

Figure 8.0 Phase 1 Data Flow

1

Out

16 Million
64-bit
Words

Figure 9.0 Phase 2 Data Flow

2

S
R

A
M

S
R

A
M

A
D

R

A
D

R

Out

16 Million
64-bit
Words

16 Million
64-bit
Words

16 Million
64-bit
Words

A
D

R
S

R
A

M

S
R

A
M

A
D

R

A B

C

DE

F

A B

C

DE

F

A B

C

DE

F

A B

C

DE

F

A B

C

DE

F

A B

C

DE

F

In

In

TCSP

TCSP

TCSP

TCSPTCSP

TCSP

M
M

U

MU
M

MMU

M
M

U

MMU

MMU

M
M

U

MMU

MMU
M

M
U

MMU

M
UM

M
M

U

MU
M

MMU

M
M

U

MMU

M
UM

M
M

U

MU
M

MMU

M
M

U

MMU

MMU

M
M

U

MMU

MMU

M
M

U

MMU

M
UM

M
M

U

MM
U

MMU

M
M

U

MMU

M
UM

Interface can be
broadsided

DSP/ARM
FPGA/Memory

DSP/ARM
FPGA/Memory

DSP/ARM
FPGA/Memory

DSP/ARM
FPGA/Memory

DSP/ARM
FPGA/Memory

DSP/ARM
FPGA/Memory

Board or MCM

Board or MCM

11

RAM

RAM

RAM

RAM

RAM

RAM

Channel
0 to 49

Channel
0 to 49

Channel
50 to 99

Channel
50 to 99

Channel
100 to 149

Channel
100 to 149

Adaptive filter
update output

TCSP

A B

C

DE

Figure 11.0 Same Instruction Multiple Data (SIMD)

Phase 1 Objective (5.) Determine how much memory can be included on chip for the proposed architecture, and
 how it should be best sectionalized, particularly for adaptive algorithms.

In addition to cascaded TCSP
chips, high end Same
Instruction Multiple Data (SIMD)
multi-TCSP configurations were
simulated with the TCSP
Model.

Figure 11.0 illustrates a data
intensive application that uses
one of three available rFPGA's
for adapting the coefficients in
realtime. And just two of the
eighteen (18) available MMU's
are used to address all six large
external memories.
This configuration allows the
unused TCSP resources to be
powered down to save power.

This configuration could ping
pong the data back and forth
through the TCSP's thousands
of times before outputting,
resolutions and data modes
could be changed on any pass.

Additionally, cascaded SIMD
structures were simulated.

F

TCSP

A B

C

DE

F

TCSP

A B

C

DE

F

up to
4 Gig
each

*

*

*

*

*

*

*

MMU
Address Output

MMU
Output

Using the on-chip 64K double buffered memory, if we add just one more TCSP as shown in Figure 10.0, we now
have a 4 Giga word processor or four channels of 1K x 1K x 1K 3-D image FFT's at 500 MSPS. Or 1 GigaSPS if data
real, or 2 Giga Sample per Second if data real and 16-bit. If data is 8-bit and real then the sustained sample rate
would be 4 GSPS.
Additionally, the four channels could be parallelized to process one 1Kx1Kx1K 8-bit channel at 16 Giga Samples per
second!

AF04-020

12

Figure 10.0 Four TCSP's Back to Back Data Flow

21

S
R

A
M

S
R

A
M

A
D

R 4 Gig
64-bit
Words

4 Gig
64-bit
Words

A B

C

DE

F

A B

C

DE

F

A B

C

DE

F

A B

C

DE

F
Out

In

TCSP TCSP

TCSP TCSP

M
M

U

MMU

MMU

U
M

M

MM
U

MM
U

M
M

U

MMU

MMU

M
M

U

M
UM

MMU

M
M

U

MMU

MMU

M
M

U

MMU

MU
M

M
M

U

MMU

MMU

M
U

M

MMU

M
UM

DSP/ARM
FPGA/Memory

DSP/ARM
FPGA/Memory

DSP/ARM
FPGA/Memory

DSP/ARM
FPGA/Memory

MCM or Board

S
R

A
M

S
R

A
M

A
D

R 4 Gig
64-bit
Words

4 Gig
64-bit
Words

A B

C

DE

F

A B

C

DE

F

A B

C

DE

F

A B

C

DE

F
Out

In

MCM or Board
TCSP TCSP

TCSP TCSP

M
M

U

MMU

M
UM

M
M

U

MM
U

MM
U

M
M

U

MMU

MM
U

M
M

U

M
UM

M
UM

M
M

U

MMU

MMU

M
M

U

MMU

U
MM

M
M

U

MMU

MMU

M
M

U

MMU

MMU

DSP/ARM
FPGA/Memory

DSP/ARM
FPGA/Memory

DSP/ARM
FPGA/Memory

DSP/ARM
FPGA/Memory

32 64

64

64

64

64

64

64

32

64

64

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Direct Input 1

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Direct Input 2

Phase 1 Objective (5.) Determine how much memory can be included on chip for the proposed architecture, and
 how it should be best sectionalized, particularly for adaptive algorithms.

At a minimum, the following internal data flows were simulated and are going to implemented within the TCSP.
These data flows eliminate the need for an on-chip massive "crossbar" switch fabric.

Figure 12.0 Direct Input 1 Figure 13.0 Direct Input 2

Figure 12.0 illustrates the internal TCSP data flow for
applications that use the DSP unit directly, while the
rFPGA, memory, and ARM do other things concurrently.
Here the DSP uses input data and coefficients from off
the chip.

Figure 13.0 illustrates the internal TCSP data flow for
applications that use the DSP unit directly, while the
rFPGA, memory, and ARM do other things concurrently.
Here the DSP uses coefficients generated from its on
chip generator, freeing up an I/O bus for other uses.

Internal Data Flow

AF04-020

13

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Cascade (Phase 1)

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Cascade (Phase 2)

Phase 1 Objective (5.) Determine how much memory can be included on chip for the proposed architecture, and
 how it should be best sectionalized, particularly for adaptive algorithms.

Figure 14.0 Cascade (Phase 1) Figure 15.0 Cascade (Phase 2)

Figure 14.0 illustrates the internal TCSP data flow for
applications that run the chip input data through the
FPGA before and after running it through the DSP.
Additionally, when used with Cascade Phase 2, the
output data is double buffered and can be re-addresses
for seamless TCSP to TCSP cascading.

Figure 15.0 See Cascade Phase 1.

Internal Data Flow

AF04-020

14

At a minimum, the following internal data flows were simulated and are going to implemented within the TCSP.
These data flows eliminate the need for an on-chip massive "crossbar" switch fabric.

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Double Buf Coef 1 (Phase 1)

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Double Buf Coef 1 (Phase 2)

Phase 1 Objective (5.) Determine how much memory can be included on chip for the proposed architecture, and
 how it should be best sectionalized, particularly for adaptive algorithms.

Figure 16.0 Double Buf Coef 1 (Phase 1) Figure 17.0 Double Buf Coef 1 (Phase 2)

Figure 16.0 illustrates using the same double buffer
technique used in the output cascading, input
coefficients (for windowing) can be changed.

Figure 17.0 Double buffered coefficient output of Phase 1.

Internal Data Flow

AF04-020

15

At a minimum, the following internal data flows were simulated and are going to implemented within the TCSP.
These data flows eliminate the need for an on-chip massive "crossbar" switch fabric.

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Double Buf Coef 2 (Phase 1)

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Double Buf Coef 2 (Phase 2)

Phase 1 Objective (5.) Determine how much memory can be included on chip for the proposed architecture, and
 how it should be best sectionalized, particularly for adaptive algorithms.

Figure 18.0 Double Buf Coef 2 (Phase 1) Figure 19.0 Double Buf Coef 2 (Phase 2)

Figure 18.0 In addition to external modification of the
coefficients, these two phases (Coef 2 Phase1 &2) show
coefficient modification via the FPGA and via the
Microprocessor.

Figure 19.0 See

Internal Data Flow

AF04-020

16

At a minimum, the following internal data flows were simulated and are going to implemented within the TCSP.
These data flows eliminate the need for an on-chip massive "crossbar" switch fabric.

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Double Buf Coef 2 (Phase 3)

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Double Buf Coef 2 (Phase 4)

Phase 1 Objective (5.) Determine how much memory can be included on chip for the proposed architecture, and
 how it should be best sectionalized, particularly for adaptive algorithms.

Figure 20.0 Double Buf Coef 2 (Phase 3) Figure 21.0 Double Buf Coef 2 (Phase 4)

Figure 20.0 illustrates third phase of the double buffered
coefficient output modified by the FPGA.

Figure 21.0 illustrates fourth phase of the double
buffered coefficient output modified by the FPGA.

Internal Data Flow

AF04-020

17

At a minimum, the following internal data flows were simulated and are going to implemented within the TCSP.
These data flows eliminate the need for an on-chip massive "crossbar" switch fabric.

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Double Buf IO (Phase 1)

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Double Buf IO (Phase 2)

Phase 1 Objective (5.) Determine how much memory can be included on chip for the proposed architecture, and
 how it should be best sectionalized, particularly for adaptive algorithms.

Figure 22.0 Double Buf IO (Phase 1) Figure 23.0 Double Buf IO (Phase 2)

Figure 22.0 illustrates the internal TCSP data flow for
double buffered input and output to and from the DSP

Figure 23.0 illustrates second phase of the dual, double
buffered DSP input and output.

Internal Data Flow

AF04-020

18

At a minimum, the following internal data flows were simulated and are going to implemented within the TCSP.
These data flows eliminate the need for an on-chip massive "crossbar" switch fabric.

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Internal Double Buf (Phase 1)

MEM_a

MEM_b

MEM_c

MEM_d

MEM_e

FPGAI FPGAO

MICRO

MEM_s

InputX

InputY

Output

Coef.
Gen.

DSP

Data

Coef

Internal Double Buf (Phase 2)

Phase 1 Objective (5.) Determine how much memory can be included on chip for the proposed architecture, and
 how it should be best sectionalized, particularly for adaptive algorithms.

Figure 24.0 Internal Double Buf (Phase 1) Figure 25.0 Internal Double Buf (Phase 2)

Figure 24.0 illustrates the dual processing datapath
capability. In this case, the DSP is operating on data from
and to internal memory, while external data is passing
through.

Figure 25.0 illustrates the second phase of the internal
memory double buffering.

Note: The input and output data could pass through the
FPGA, etc.

Internal Data Flow

AF04-020

19

At a minimum, the following internal data flows were simulated and are going to implemented within the TCSP.
These data flows eliminate the need for an on-chip massive "crossbar" switch fabric.

Phase 1 Objective (6.) Determine whether it is technically possible and within the abilities of DSP
Architectures Inc. to support adding FPGA capability on board the proposed chip.

As illustrated back in our data flow diagrams, the rFPGA hardware is linked to all the on chip resources to help in im-
plementing the pre and post transform processing functions, the I/O switching fabric, as well as other stream-oriented
operations.

After evaluating several potential FPGA fabric vendors, we believe the TCSP can embed M2000's core and we have
focused on M2000 (www.m2000.fr). They offer FlexEOS Embedded FPGA Cores. Some of the applicable highlights
are as follows.

A symmetrical, hierarchical architecture for fast, dense FPGA functions.
Optimized size.
High occupation factor.
Deterministic, fanout independent timing.
Completely flexible I/O assignment.
Multiple clock domains.
Compact bitstream for fast, dynamic re-configuration
Fast and predictable compilation time, for example: 33K logic gates = 3-4 minutes.
Generation of data to validate timing and logic at SOC level.
Efficient, automatic software flow that integrates with standard tools.
On-chip testing.
FlexEOS can be implemented on any silicon technology.
Fast logic: 300+MHz or faster depending on how heavily pipelined the design is. (Since the TCSP is
pipelined and the system architecture is low latency, this is the case.)
Die Area :

2 -8 mm for 20k ASIC gates
2 -15 mm for 30/50k ASIC gates
2 -60 mm for 60/70k ASIC gates

Designs at the higher gate densities employ redundant/repairable architecture whereby the compiled config-
uration bit-stream is dynamically modified to map out the damaged sections. When this is combined with
the ultra fast re-programming time, the result is higher fault tolerance and the ability to implement more fault
tolerant types of pre-and post-processing TCSP algorithms.

Bit processing
Automatic Gain Control (AGC)
I/Q Split
Decimate
Interpolate
Weighted Overlap Add (WOA)
Scalar Math/Logic
Simple FIRs/Dot Products
Point Spread Function Calculations
Dominate Spectra Processing
Averaging
Content Addressable Storage
Table Lookup
Difference processing
Fast Histograms
Coefficient Adaptation
QR Decomposition
LMS/Genetic Adaptive Calculations
Rapid I/O Protocol Logic

Sample rFPGA TCSP Functions:

Data format conversions
'King of the hill' tracking
Array subtraction for CFAR as illustrated in Objective 11
Thresholding for multiple real time adaptive thresholds
Algorithm acceleration for the ARM microprocessor
Improved utilization of the DSP datapath by offloading simple vector
multipy/add's.
Demod/Viterbi decoding
Power management
Accelerate and extend ARM calculations
Real only vs complex recombines
Block floating point management
Quadrature modulation/demodulation
Dynamic application mode management
Environmental detection and compensation
Etc.

AF04-020

20

Phase 1 Objective (7.) Investigate an on-chip microprocessor, how capable, and what on chip
microprocessor. Determine the software advantages of different on chip microprocessors and how much
on-chip microprocessor memory is possible.

2The TCSP is probably going to be 256 mm .

2The ARM 7 is 2.4 mm

TCSP die

Figure 26.0 ARM Core sizes

After careful consideration of the abundance of available RISC cores, DSPA has selected the ARM720T core.
This core is small and has unparalleled software support, along with being the most popular in the industry.
The on chip ARM will allow DSPA to easily port the existing DSP24 application library to the TCSP, and make the
growing application library transparent to future TCSP hardware upgrades.

The TCSP architecture is not demanding of the on chip RISC, the ARM will be used to communicate with the chips
"outside" world and configure and control the TCSP's resources at a high level.

Fault tolerance and built in test circuitry will be a major task of the ARM.

Figure 26.0 shows the relative small size of the ARM 7, and its memory, as compared to the anticipated TCSP die
size.

To accommodate as much application utility as possible, the size of the ARM's memory will be selected after the
TCSP chip's sizing is close to being finalized.

ARM
Memory
size?

AF04-020

21

Phase 1 Objective (8.) Measure the impact of increasing resolution. This includes the cost of a dedicated fixed
 point to and from IEEE floating point conversion and moving the architecture from 24-bits complex binary to
 32-bits complex binary. Determine whether full IEEE floating point or boundary conversion is needed for the
target set of applications and whether it can be added effectively to the TCSP chip.

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

Low-Level Signal

dB

32-bit Binary

Figure 27.0 32-bit Binary PSD
dB

DSPA has finished designing the TCSP simulator, this sections summarizes some of the applications coded so far.

Figure 27.0 shows an initial two tone test using the chip model. The precision used here is the full 32-bit complex
binary (32-bits of real, plus 32-bits of imaginary, with the addition of block floating point.
As illustrated a over 120 dB of signal range has been achieved, so far. Even more accuracy can be achieved when
the full capability of the TCSP block floating point features are used, close to 200 dB of two tone differences are
expected.

The TCSP's 32-bits plus 8 bits of block floating point is calculated at the full chip targeted speed of 300/500 MHz.
Note: Large FPGA solutions such as the Xilinx Virtex-2 and future Virtex-4 struggle with 32-bit precision and with
floating point.

(f/fs)

0 0.5 1.0

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

Low-Level Signal

dB

32-bit Binary

Figure 28.0 IEEE 32-bit Floating Point PSD
dB

(f/fs)

0 0.5 1.0

Four term Blackman-Harris
window response. Future
TCSP simulations will show
that this data type approaches
IEEE double precision floating
point accuracy.

Figure 28.0 shows the IEEE
floating point result after the
32-bit binary result is
converted on chip.
Based on past DSP
applications, DSPA believes
that converting the 40-bit data
type to IEEE floating point on
chip using a fast dedicated
logic block is superior to
implementing floating point
throughout the processor,
front to back.

AF04-020

22

Phase 1 Objective (8.) Measure the impact of increasing resolution. This includes the cost of a dedicated fixed
 point to and from IEEE floating point conversion and moving the architecture from 24-bits complex binary to
 32-bits complex binary. Determine whether full IEEE floating point or boundary conversion is needed for the
target set of applications and whether it can be added effectively to the TCSP chip.

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

Low-Level Signal

dB

24-bit Block Floating Point

Figure 30.0 24-bit Block Floating Point PSD

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

dB

16-bit Block Floating Point

Figure 29.0 16-bit Block Floating Point PSD

(f/fs)

0 0.5 1.0

(f/fs)

0 0.5 1.0

Figure 29.0 illustrates the
actual TCSP 16-bit data type
FFT response.
This data type will be twice as
fast as the 32-bit TCSP data
types, i.e. 2 Giga Hertz
sustained sample rate or
higher.

Figure 30.0 is the TCSP data
type inherited from the wealth
of applications the DSP24 and
Sharp LH9124 have
implemented for over a decade.

Most modern DSP applications
need more that 16-bits of
precision when taking
advantage of the efficiencies of
the frequency domain, this data
type gives it to them.

When compared to the floating
point and 32-bit binary data
types, power savings of 25%, or
more, can be had by using 24-
bits. And the TCSP can easily
switch between data types,
within an application, to save
power.

AF04-020

23

Phase 1 Objective (8.) Measure the impact of increasing resolution. This includes the cost of a dedicated fixed
 point to and from IEEE floating point conversion and moving the architecture from 24-bits complex binary to
 32-bits complex binary. Determine whether full IEEE floating point or boundary conversion is needed for the
target set of applications and whether it can be added effectively to the TCSP chip.

0 .5 1.7

-96

dB

0 dB
- 6
-12
-18
-24
-30
-36
-42
-48
-54
-60
-66
-72
-78
-84
-90

-102
-108

-96

dB

0 dB
- 6
-12
-18
-24
-30
-36
-42
-48
-54
-60
-66
-72
-78
-84
-90

-102
-108

As a first attempt to illustrate the flexibility of the
TCSP processor, Figure 31.0 shows the TCSP
quickly switching between data types, switching
between windows functions, and switching
between algorithms to find an extremely weak
signal in the presence of a very large signal. After
four combinations, no small signal presence
detected.

The "intelligence" for this signal search can be
managed by the on-chip ARM processor, or if
need the ARM processor accelerated with the on-
chip rFPGA fabric.

Figure 31.0 Weak Signal Search

Figure 32.0 Weak Signal Search

As shown here in Figure 32.0, the TCSP
implements a 512K complex DFT (not FFT),
(blue) to verify that there is any small signal
there at all. Then, for much faster speed,
switches over to a 32-bit data type 512K point
FFT with comparable results.
The TCSP can rapidly switch resolution, data
types, and algorithms dynamically as required.

Had the signal not appeared, the TCSP could
have easily switched to a 32-tap, weighted
overlap add, 64K point polyphase FFT. This
could insure the signal was not hiding between
bins.

A CFAR routine was also used to automatically
find the signals.

DFT 40-bit FFT

AF04-020

24

Phase 1 Objective (9.) In an effort to reduce overall application chip count, investigate moving memory management
capability onto the proposed chip (in the form of the MMU24) along with on-chip twiddle factor generation.

To facilitate and reduce the application chip count, six on chip MMU's will be implemented on the TCSP. The MMU's
will support both on chip memory management for single chip applications and off chip memory for extreme data
intensive applications such as 3-D image processing. Additionally, the MMU's have been expanded to address 32
bits of address range each.

The TCSP's on chip coefficient/ twiddle factor generation eliminates several external components and saves even
more in multi-TCSP applications. When the user is sourcing adaptive coefficients or window functions external to the
TCSP, the Coefficient Generator (CG) can be dynamically turned off to save power.

The block diagram of the
on chip twiddle factor gen-
eration/decompression en-
gine, the CG is shown in
Figure 33.0.

Since, initial slope-fitting re-
sults indicate that the meth-
odology will work, substan-
tial engineering was done
to reduce the plus or mi-
nus multone (PMO) errors
and in determining the mini-
mum
multplier/adder/rounder/
storage components.

In order to store bit-
accurate coefficients, an
adjustment of +1 or -1 or
none must be made to the
final interpolated data
point. Depending on
Frame size (interpolated
points per curve), the stor-
age of this extra adjust-
ment will be several times
larger than the bit storage
requirement of the seeds
for the curve. To reduce this, the compression routine was modified to calculate data points to more significant digits,
and to use multiple rounding techniques.
The modifying algorithms are as follows:

- Data generated to desired bit width plus 1 bit, truncate lower 1 LSB
- Data generated to desired bit width plus 1 bit, round at smallest LSB and truncate to bit width.
- Data generated to desired bit width plus 2 bits, truncate lower 2 LSB
- Data generated to desired bit width plus 2 bits, round at smallest LSB and truncate to bit width.
- Data generated to desired bit width plus 2 bits, round at smallest 0.5 bit and truncate to bit width.
- Data generated to desired bit width plus 2 bits, round at smallest LSB and 0.5 LSB and truncate to bit width.
- Data generated to desired bit width plus 3 bits, truncate lower 2 LSB
- Data generated to desired bit width plus 3 bits, round at smallest LSB and truncate to bit width.
- Data generated to desired bit width plus 3 bits, round at smallest 0.5 bit and truncate to bit width.
- Data generated to desired bit width plus 3 bits, round at smallest LSB and 0.5 LSB and truncate to bit width.
- Data generated to desired bit width plus 4 bits, truncate lower 2 LSB
- Data generated to desired bit width plus 4 bits, round at smallest LSB and truncate to bit width.
- Data generated to desired bit width plus 4 bits, round at smallest 0.5 bit and truncate to bit width.
- Data generated to desired bit width plus 4 bits, round at smallest LSB and 0.5 LSB and truncate to bit width.

0 Sqr, Slope, Offset, PMO Error
(Optional)
1 Sqr, Slope, Offset, PMO Error

MSB

Function Address (X)

X

Mult
X

Sqr Slope

LSB

Offset Compressed
Plus/Minus/One Error

De-Compress

XSqr

XSlope

Round

Optional

Function Data (Y)

Add1 Add2

Figure 33.0 on chip Coefficient Generator (CG)

Mult
X

AF04-020

25

Phase 1 Objective (9.) In an effort to reduce overall application chip count, investigate moving memory management
capability onto the proposed chip (in the form of the MMU24) along with on-chip twiddle factor generation.

Results for four of the most likely 1 million point twiddle factor generation blocks:

- 24 bit resolution, stored as 512 curves with 512 (Frame) interpolated points per curve.

- 24 bit resolution, stored as 128 curves with 2048 (Frame) interpolated points per curve.

- 32 bit resolution, stored as 1024 curves with 256 (Frame) interpolated points per curve.

- 32 bit resolution, stored as 512 curves with 512 (Frame) interpolated points per curve.

AF04-020

The results indicate that the PMO error is not very sensitive to extra bits. It is more a function of the round on data
points that end in a long run of 1’s or 0’s that when rounded or borrowed from, generate a carry that ripples into
higher significant bits. Overall, the standard round (add of 0.5) to the final data point, gave the most even PMO error
results.

Work was done creating a masking routine to systematically find minimum mask sizes to control the bit widths of all
aspects of the twiddle factor generation logic. The masks in Figure 34.0 were applied to the corresponding inputs in
Figure 33.0 to control bit widths.

XSqr XSlope Sqr Slope Offset Add1 Add2

Figure 34.0 Compression Inputs

26

Phase 1 Objective (10.) Determine whether the entire chip and/or board system should be simulated with an
integrated approach and/or what needs to be done to tie multiple vendor IP support tools together to form a whole.

DSPA has converged on the following TCSP Software
Environment:

ARM Design with ARM Cores for full chip physical
integration is based on standard commercial tools.

 Application Development supported by ARM via its'
Realview Development Suite and many third party
manufacturers.

 Realview Development Suite
 - Code Generation Tools - C and Embedded C++ compilers, Assembler and Linker for ARM and Thumb®
instruction sets.
 - An Integrated Development Environment for Windows - CodeWarrior® IDE from Metrowerks® (PC version only)
- GUI debugger - AXD and ARM symbolic debugger (armsd). - Instruction set simulators
 - Provides accurate simulation of ARM and Thumb core-based processors.
 - Real-time Debug and Trace support.
 - Allows development and benchmarking of code before hardware is available.
 - User extensible to (C or C++) to add support for custom peripherals.

rFPGA

 FlexEOS macro is delivered with the complete set of data for full SoC DFT, floor planning, physical verification.
This includes the three main design
 environments.
 - Full chip physical integration is based on standard commercial tools.
 - Tools for data generation to validate timing and logic at SOC level using
 standard commercial tools.
 - Configuration generation, download, and corruption recovery.
 - Embedded test via BIST.

DSP
 Application Development - Performed at a high level using scripts to drive System Simulations.
 - Sophisticated ARM/FPGA/DSP processing using ARM Instruction Set Simulator
 combined with DSP scripts and custom FPGA hardware macros in C or C++.
 - DSP Script compiler.
 - Coefficient and Window generation tools.

 Full RTL and Gate level simulation using standard commercial tools.

Figure 35.0 Current RHDSP24 Development ToolsFigure 35.0 is a picture of the current DSPA rad hard
processor tool set.

The TCSP tool set will build upon this enviroment and
its legacy of application software.

AF04-020

27

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

Figure 37.0 1024 Point FFT with Hamming Window
Bin Frequency Response

0 dB

-42 dB

WOA Taps = 0 WOA Taps = 4 WOA Taps = 8
1-1 2-2 1-1 2-2 -1-2 1 2 Bins

The test of any computing architecture is how
comprehensively, efficiently and precisely it
performs the targeted class of applications.

One application that is enjoying the lime light is
polyphase filters. They can be efficient and
application enabling. The following was simulated
with the new TCSP C simulator.

Figure 36.0 shows three bin responses of an FFT's
output. This FFT applied no window function at all.

When there is no weighted overlap add (WOA)
applied before performing the FFT, WOA=0, then
the response is classic, a fat main lobe that drops
off slowly.

When four taps are applied, the side lope rejection
stays the same, but the main lobe is much skinner.

Eight WOA taps gives an even skinner main lobe,
and again the side lobes are the same height, a
much sharper response than the straight FFT (i.e.
WOA=0). This would be terrific for detecting the
presence of precisely located signals, even
millions of them.

Referring to Figure 37.0 let's do this again,
but this time with a Hamming window
function applied before the FFT in the case
of WOA=0 and before the weighted overlap
add function for the four and eight tap
examples.
Notice this time the main lobe width is fatter
than the no window case above, for all three
responses, but the side lobes are classically
down to -42 dB.

The WOA=8 response would not only be
great for detecting signals, but this time
would also have quite a bit of out of band
noise and interference rejection. WOA's of
32-taps and greater are easily managed by
the TCSP.

An architecture that could efficiently perform
filter banks such as this has several
applications in radar, software radio, and
even image processing.

Figure 36.0 1024 Point FFT with no Window
Bin Frequency Response

0 dB

-13 dB

WOA Taps = 0 WOA Taps = 4 WOA Taps = 8
1 2 1-1 2-2 1-1 2-2 Bins -2 -1

-200 dB

-200 dB

AF04-020

28

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

Figure 38.0 FFT with Remez Filter coefficients
in place of the window function

Bin Frequency Response

WOA Taps = 4

-85 dB

1-1 2-2 Bins

0 dB

Using the TCSP simulator for the four tap WOA=4 case. This
time we use the on chip ARM accelerated by the rFPGA to
quickly calculate a Remez filter impulse response to be used
in place of the window function.

Using the Remez exchange algorithm to calculate the
coefficients, we can specify the stop band suppression and the
width of the main lobe, as shown in Figure 38.0.

Notice this time we get -85 dB of side lobe suppression, and a
fat main lobe all but filling the bin.
This response would be good for applications like software
radio, and transmultiplexers that want very little cross talk
between channels and flat response within the channel.

The TCSP platform can generate these impulse responses
concurrently and on "the fly" as it configures itself for a wide
range of filter bank requirements.

AF04-020

29

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

Figure 39.0 8K Channel Polyphase Digital Filter Example

+

+

+

FFT

=

Input Signal

Window or Filter Coefficients

8192 Closely Spaced Channels

rFPGA

Vector Unit

TCSP Polyphase

500 MHz - 32 bit binary

500 MHz - 32 bit IEEE floating point

1 GigaHertz - 16-bit binary

2 GSPS - 8-bit binary

Complex Target
 Sample Rate:

Figure 39.0 illustrates the actual polyphase application ran using the TCSP simulator. The weighted overlap add
section before the FFT is performed by the FPGA fabric. The 8K channel channelizer as shown here can be
performed by one TCSP chip. With the addition of just external memory, channelizers of 64K and beyond are
possible, with 32-bit binary accuracy.

8K 8K 8K 8K

32K
8K 8K 8K 8K

8K

8K

8K

8K

8K

8K

0 dB

-85 dB

AF04-020

30

Using FIR coefficients instead of
window coefficients gives flat
passband and very low side lobes !!

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

0 375 750 1125 1500 1875 2250 2625 3000

A x B = C

C FFT

A

B

C

Figure 40.0 Doppler Processing using the Short Time Fourier Transform (STFT)

The TCSP simulator was applied to Radar Doppler processing as illustrated below in Figure 40.0, the Short Time
Fourier Transform (STFT) takes a Radar chirp time domain signal (B), multiplies it against the sliding Hamming
window (A), for a windowed result (C). (C) is then Fourier transformed using the FFT.

2x[n] = Acos(T n)o

Hamming

Hamming 2x[n] = Acos(T n)o

AF04-020

31

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

To process the full 75,000 tome domain samples, 200, 750 point real FFT's are performed, with 50% overlap.

Using the TCSP, a Radix-256 followed by a radix-3 = 768 a point transform.

One TCSP Chip Two cascaded TCSP chips

768 points x 3.33 nSec x 200 slides =
511.4 µsec

768 points x 3.33 nSec x 200 slides
x 2 passes = 1022 µsec

300 MHz 300 MHz

768 points x 2 nSec x 200 slides =
307 µsec

768 points x 2 nSec x 200 slides
x 2 passes = 614.4 µsec

500 MHz 500 MHz

Table 1.0 gives the execution times for a 300 MHz TCSP chip and a 500 MHz TCSP chip.
Notice that the window function (Hamming in this case) is free, it is included in the first pass of the TCSP's FFT
calculation. Also, the 750 points are zero padded out to 768 points. That's just 18 points added to the 750 samples, as
opposed to the 256 points that would have to be added, had we not had the Radix-3 structure.

Also note, that there is a small (>1%) performance latency penalty for waiting for the one chip solution above to turn
wait for the pipeline to finish, before turning around. This penalty is small because of the TCSP's ability to stack, this
will be discussed further in Objective (13.).

AF04-020

Table 1.0 Short Time Fourier Transform (STFT) Execution Times

32

Note: If final chip runs faster these execution times scale directly.

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

0.5

0.4

0.3

0.2

0.1

0
0 18500 37500 55500

Time

F
re

q
u

e
n

cy

TCSP Output
Magnitude
Color
Coded

2Chirp = x[n] = Acos(T n)o

75000

75,000 samples computed using a Hamming window of length 750
using 50% overlap.

Spectrogram

Time

Figure 41.0 Doppler Processing using the STFT - Results

The 200 FFT's are performed and plotted as shown above in Figure 41.0.

In this case a narrow-band spectrogram is computed using a relatively long window of 768 samples. This gives us
good frequency resolution asa shown.
For better time resolution, a shorter window would be used, say 250 samples. Also, the overlapping can be changes
from the shown 50% to say 30% or less.

The point to be made here is that the TCSP with its wealth of radices, especially the odd radices, gives you many
choices to optimize the performance per watt of the Doppler processing.

Additionally, this Doppler processing was done with the TCSP's 32-bit block data type. With this kind of full speed
precision the most minute Doppler profile would show up quickly.

AF04-020

33

FFT

Matched
Filter
F(k)

IFFT

4K POINTS

0 0.5 1 1.5

x 10
-4

-10

0

10

20

30

40

50

Compressed Pulse

COMPRESSED ANALOG OUTPUT

0 500 1000 1500 2000
-40

-30

-20

-10

0

10

20

30

40
Reference WF

0 0.5 1 1.5
x 10-4

-1.5

-1

-0.5

0

0.5

1

1.5
LFM time History

UNCOMPRESSED ANALOG INPUT

MEMORY

FFT Conj.

-3 -2 -1 0 1 2 3

x 10
-5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

REFERENCE WAVEFORM ½ MATCHED FILTER W/ HAMMING WINDOW

Figure 42.0 Illustration of Frequency Domain Pulse Compression

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

A key requirement for any Radar system is the fast calculation of the matched filtering section.
Figure 42.0 illustrates a 4K Radar matched filter.

This was extensively simulated with the TCSP simulator, and a single chip TCSP can perform this function in just
4096 x 2 passes for the forward FFT, and 4096 x 2 passes for the inverse FFT.

Since the window multiply is free on the first pass of the TCSP's FFT, and the coefficient multiply on the inverse FFT
is free, the approximate number of clocks is 4096x2x2= 16K clocks.

Running at 500 MHz, that's a sustained sample rate of 250 MSPS for 16-bit data, with one TCSP. Two TCSP's back
to back would do the complete matched filter at a 500 MSPS rate. In fact, two TCSP's back to back, with no external
componets, could do a 64K fast convolution matched filter at a 500 MSPS rate, with two full rFPGA's and plenty of
on chip memory left over for other calculations concurrently.

Again, if this algorithm is needed, but at 100 MSPS instead of 500 MSPS, then an 80% power reduction can be
realized by lowering the chip clock by 80%, then quickly increasing the clock for some other algorithm, if needed.

AF04-020

34

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

15

10

5

0

-5

-10
0 50 100 150 200 250 300

A
m

p
lit

u
d

e

Spectrum Display

Signals

Background

Filter
E(i)

E(i)/R

N(i)
Out(i)

{Out(i)>0 ---> Detection }

+
_

I/R

A typical radar output report may look something like Figure 43.0, two signal peaks in the present of constantly
changing background noise.
In this example the CFAR circuitry as shown in Figure 44.0 will trigger an event when the two signal shown
exceed a set threshold above the background noise.

Figure 43.0 Radar Display

Figure 44.0 CFAR Algorithm

AF04-020

35

Figure 45.0 Realtime Fast Convolution Filter Output

Figure 46.0 Filter Output on Top Of Input Signal

Figure 45.0 shows the actual result of the fast convolution, the output of the filter N(i), the background noise.

Figure 46.0 overlays the filter output on the original input E(i). Notice how the signals rise above filtered the noise.

Out(i)

{Out(i)>0 ---> Detection }

N(i)

N(i)
E(i)

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

AF04-020

36

Figure 47.0 Subtracted Signals

Finally, Figure 47.0 shows the output of the filter subtracted from the background noise, Out(i).

And the blue line shows the detection where the signals exceed the threshold.

To give you an indication of the predicted performance of the proposed TCSP chip:

There are 10 passes (program lines) to this application, each pass is made up of 4096 clocks

4096 x 10 = 40960 total clocks for the complete algorithm.

If the TCSP runs at 300 MHz, then 40960 x (1/300MHz) = 136.5 uSec.

And if we use the Radix-256 pass followed by a Radix-16 pass, this reduces the 10 passes to 8, thereby:

4096 x 8 = 32768 clock x (1/300 MHz)= 109.2 uSec.

Additionally, the subtract for many channels could easily be done by the on-chip rFPGA for even more performance.

Out(i)

{Out(i)>0 ---> Detection }

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

AF04-020

37

The Two-Dimensional Case

The CFAR algorithm can appear as a two-dimension problem. For example, a waterfall display, where the spectrum
as a function of time, is presented to the operator to increase the detection probability. Another example is a acoustic
emission "crack" detection system. In the two-dimensional case, the background level is estimated by averaging
over a two dimensional window around the point of interest that excludes the very close neighbors of that point.
The design of the averaging window is application specific , it usually resembles a spectrum-waterfall display, where
the system looks for a verticle line on the display. A typical averaging window is illustrated in Figure 48.0.
As in the one-dimensional case the noise estimation is a convolution operation between the two-dimensional input
and the two-dimensional window function. Basically the algorithm is -1 the same as the one-dimensional case, with
the FFT being two-dimensional.

The method for performing a two-dimensional FFT using the TCSP was explained and coded eariler. Basically, the
two-dimensional transform can be performed as a one dimensional transform with a length of NxM, and with proper
MMU addressing. In this case the TCSP can easily perform the 4096 x 4096. The transform length is 16 meg.
Therefore, the optimal radix is (256 x256) x (256 x 256).

Note: The new Radix-3 and Radix-5 will pay big dividends in selecting "non-power of two" 2-D or 3-D sizes.

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

Figure 48.0 Two dimensional CFAR Realtime Filter

4096

4096

AF04-020

38

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

FFT = 240x240o.dat (Plotted as log(R^2+I^2))

Input = 240x240i.DAT

Figure 49.0 Sampled Image

Figure 50.0 Image PSD

A truely flexable DSP processor needs to excell at
2-D and 3-D image processing. Modern
survailance systems and fast seekers need the
autonomy and added capability of on board image
processing.
The TCSP simulator shows that the TCSP can
perform signal algorithms and image algorithms
interactively. This efficient switching between one,
two, and three dimensions goes a long ways
towards making this architecture cost effective
across a wide class of satellite and weapon system
applications.

Consider the sampled image in Figure 49.0, a 240
x 240 digital camera photograph.

The TCSP code listed in Table 2.0 transforms this
picture to the frequency domain as shown in
Figure 50.0.

Notice now that unlike signal processing we have
gone from something recognizable, to something
chaotic. Whereas with the 1-D signal, it was the
frequency domain that had nice coherent patterns.

This added dimension has complicated our
architecture. If we want to use the same chip for all
three dimensions, the third being moving 2-D
images. Then a lot of thought needs to go into how
we process massive amounts of data quickly and
comprehensively.

The TCSP and its simple register programming
handles the corner turning, digit reverse, process
gain normalizing, pattern recognition, etc. fast and
efficiently.

AF04-020

39

Output = 240x240_conv.dat

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

The results of this code indicate that the new mixed butterfly (MXBFx) and mixed twiddle factor(MXTFx) address
functions and the new BFLY3 and BFLY5 DSP functions mesh well together and mesh well with the existing base
address and DSP functions to provide an extensible integrated mixed and split radix signal processing environment.

Figure 51.0 Inverse FFT Resulting Image

Figure 51.0 shows the inverse FFT of the transformed picture, the TCSP transformed this image in one pass per
line, that's 256 x 256 (zero padded out to 256) or 64K clocks. All the corner turning and data management was
handled by the internal MMU's through simple and fast register programming. The MMU's registers are shadowed
so they can be changes while being used. The MMU's could have managed thousands of these images at once.

The high pass filter of this image gives the edges, again the multiply against the high pass coefficients on the
inverse transform is free, just as the input window function was.

As will be shown later in this section, involved blind deconvolution image processing will be performed by the TCSP.
Blind deconvolution could go a long ways towards removing unwanted Radar clutter.

Table 2.0 contains the simple register programming to do sophisticated 2-D and 3-D image fast convolution.

AF04-020

40

Original unfiltered image

Notice the presence of the nose in the filtered
image above.

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

// Perform a 256 x 256 point 2-D, in place, transform in two seperate steps
// 1) Transform rows
// 2) transform columns
// Note: This routine is easily expandable to 1024 x 1024 points.

 ProgramName = "Do256x256_FFT"; // Name the callable compiled routine
 Port = LPT1; // Port address that DSP is connected to
 LogFile = "RESULT.LOG"; // Log file to record progress to

 SCHADRTODATA = 2;
 OFFSET = 1;

 MMU_A<PCSTART> = 0;
 MMU_B<PCSTART> = 0;
 MMU_C<PCSTART> = 0;
 MMU_D<PCSTART> = 0;
 MMU_E<PCSTART> = 0;

 MMU_A<PCEND> = 0;
 MMU_B<PCEND> = 0;
 MMU_C<PCEND> = 0;
 MMU_D<PCEND> = 0;
 MMU_E<PCEND> = 0;

 MMU_A<ADRSTART> = 0x00000;
 MMU_B<ADRSTART> = 0x00000;
 MMU_C<ADRSTART> = 0x00000;
 MMU_D<ADRSTART> = 0x00000;
 MMU_E<ADRSTART> = 0x00000;
 MMU_A<ADRLENGTH> = 0x00100;
 MMU_B<ADRLENGTH> = 0x00100;
 MMU_C<ADRLENGTH> = 0x00100;
 MMU_D<ADRLENGTH> = 0x00100;
 MMU_E<ADRLENGTH> = 0x00100;
 MMU_A<ADRINC> = 0x00001;
 MMU_B<ADRINC> = 0x00001;
 MMU_C<ADRINC> = 0x00001;
 MMU_D<ADRINC> = 0x00001;
 MMU_E<ADRINC> = 0x00001;

 MMU_A<N> = 0x00100;
 MMU_B<N> = 0x00100;
 MMU_C<N> = 0x00100;
 MMU_D<N> = 0x00100;
 MMU_E<N> = 0x00100; // Twiddle Size
 MMU_A<MEMSIZE> = 0x00100;
 MMU_B<MEMSIZE> = 0x00100;
 MMU_C<MEMSIZE> = 0x00100;
 MMU_D<MEMSIZE> = 0x00100;
 MMU_E<MEMSIZE> = 0x00100; // For Twiddle
 MMU_A<SKEW> = 0x00023F; //23F= +1 0 -1 -1
 MMU_B<SKEW> = 0x00023F; // TC CCR MWR MOE
 MMU_C<SKEW> = 0x00023F; // 001 000 111 111
 MMU_D<SKEW> = 0x00023F;
 MMU_E<SKEW> = 0x00023F;
 MMU_A<MASTEROFFSET> = 0x00000;
 MMU_B<MASTEROFFSET> = 0x00000;
 MMU_C<MASTEROFFSET> = 0x00000;
 MMU_D<MASTEROFFSET> = 0x00000;
 MMU_E<MASTEROFFSET> = 0x00000;
 MMU_A<MASTEROFFINC> = 0x00100;
 MMU_B<MASTEROFFINC> = 0x00100;
 MMU_C<MASTEROFFINC> = 0x00100;
 MMU_D<MASTEROFFINC> = 0x00100;
 MMU_E<MASTEROFFINC> = 0x00000;
 MMU_A<MASTERREPEAT> = 0x000FF;
 MMU_B<MASTERREPEAT> = 0x000FF;
 MMU_C<MASTERREPEAT> = 0x000FF;
 MMU_D<MASTERREPEAT> = 0x000FF;
 MMU_E<MASTERREPEAT> = 0x000FF;

ALGEND;
 OFFSET = 0x100;

 //
 // Using the MASTERREPEAT/MASTEROFFINC registers with N set to 256 will
 // require the RBF0 pattern to be run twice. Once on the rows and once
 // on the columns.
 //
 // The Data will always be in the same row,comlumn format.

 //
 // Tranform Rows
 //
 MMU_B<PROGMEM+0x00> = BFC0;
 MMU_E<PROGMEM+0x00> = TF16C0; // To do window, use RBF0...
 MMU_A<PROGMEM+0x00> = RBF0;
 //MMU_B<LATENCY+0x00> = GETLATENCY(BFLY16)+3;
 // GETLATENCY(BFLY16)+3 = 224+3 = 0x0E3 =00001 1100011 = 1 0x63
 MMU_B<EXTFEAT+0x00> = 0x01;
 MMU_B<LATENCY+0x00> = 0x63;

 MMU_E<EXTFEAT+0x00> = 0;
 MMU_E<LATENCY+0x00> = READRAM+0x00;
 MMU_A<EXTFEAT+0x00> = 0;
 MMU_A<LATENCY+0x00> = READRAM+0x00;
 MMU_D<PROGMEM+0x00> = NOP;
 MMU_C<PROGMEM+0x00> = NOP;
 MMU_D<EXTFEAT+0x00> = 0;
 MMU_C<EXTFEAT+0x00> = 0;
 MMU_D<LATENCY+0x00> = READRAM+0x00;
 MMU_C<LATENCY+0x00> = READRAM+0x00;

 DSP<FuncCode> = BFLY16;
 //DSP<FuncCode> = VWND16;
 DSP<DataFlow> = RAREWB;
 DSP<XSFISEL> = USERBFP;
 DSP<XSFI> = 4;
 //DSP<BFPI> = 0;
 DSP<BFPI> = BFPCLR;
 YinFile = "256twid.dat";
 //YinFile = "wind256.dat"; // 256 x 1's.
 XinFile = "256x256i.dat";
 //XinFile = "256simpi.dat";
 //XinFile = "256simpi2.dat";

STARTPASS;
AFTERPASS;

 MMU_A<PROGMEM+0x00> = BFC4;
 MMU_E<PROGMEM+0x00> = TF16C4; // re-set N and MASTERREPEAT if modified above
 MMU_B<PROGMEM+0x00> = BFC4;
 //MMU_A<LATENCY+0x00> = GETLATENCY(BFLY16)+3;
 // GETLATENCY(BFLY16)+3 = 224+3 = 0x0E3 =00001 1100011 = 1 0x63
 MMU_A<EXTFEAT+0x00> = 0x01;
 MMU_A<LATENCY+0x00> = 0x63;
 MMU_E<EXTFEAT+0x00> = 0;
 MMU_E<LATENCY+0x00> = READRAM+0x00;
 MMU_B<EXTFEAT+0x00> = 0;
 MMU_B<LATENCY+0x00> = READRAM+0x00;
 MMU_D<PROGMEM+0x00> = NOP;
 MMU_C<PROGMEM+0x00> = NOP;
 MMU_D<EXTFEAT+0x00> = 0;
 MMU_C<EXTFEAT+0x00> = 0;
 MMU_D<LATENCY+0x00> = READRAM+0x00;
 MMU_C<LATENCY+0x00> = READRAM+0x00;

 DSP<FuncCode> = BFLY16;
 DSP<DataFlow> = RBREWA;
 //DSP<XSFISEL> = AUTOBFP;
 DSP<XSFISEL> = USERBFP;
 DSP<XSFI> = 4;
 DSP<BFPI> = FEEDBACKBFPO;
 YinFile = "256twid.dat";
 //OutFile = "256simprow_o.dat";
 OutFile = "256x256row_o.dat";

STARTPASS;
AFTERPASS;

 // Setting mode bit-2 will turn on the bit-reverse logic, and
 // Setting N will determine the justification.
 // By setting N larger than the actual increment length
 // the bit position can be manipulated to put the bit
 // reverse in the column bits, thus performing a bit
 // reverse accross the column.
 //
 // Exp. For an 8x8 matrix that we want to bit-reverse successive
 // columns.
 //
 // Run INC address pattern
 // Registers = MODE=4, N=64,
 // ADRSTART=0, ADRINC=1, ADRLENGTH=8,
 // MASTEROFFSET=0, MASTEROFFINC=1, MASTERREPEAT=7
 //
 //00000 00020 00010 00030 00008 00028 00018 00038
 //00001 00021 00011 00031 00009 00029 00019 00039
 //00002 00022 00012 00032 0000A 0002A 0001A 0003A
 //00003 00023 00013 00033 0000B 0002B 0001B 0003B
 //00004 00024 00014 00034 0000C 0002C 0001C 0003C
 //00005 00025 00015 00035 0000D 0002D 0001D 0003D
 //00006 00026 00016 00036 0000E 0002E 0001E 0003E
 //00007 00027 00017 00037 0000F 0002F 0001F 0003F

 //
 // Tranform Columns
 //
 MMU_A<MODE> = 0x04; // Turn INC into a shifted (by N) RBF0
 MMU_A<MASTEROFFINC> = 0x00001; // Increment through columns
 MMU_A<N> = 0x10000; // Put 8-bit INC into upper 16-bits
 MMU_B<N> = 0x10000; // Use Bfly pattern on output
 MMU_B<MASTERREPEAT> = 0x00000; // (could also use DUALINC)
 MMU_E<N> = 0x10000; // NOTE: MEMSIZE still = 256

 Table 2.0 Simple. Quick Register Programming for 2-D and 3-D Image and Signal Processing

AF04-020

41

 MMU_E<MASTERREPEAT> = 0x00000;

 // Now transform the columns.
 MMU_B<PROGMEM+0x00> = BFC8; // BFC0 on column (n= 2^8 x 2^8 matrix = C0+8)
 //MMU_B<PROGMEM+0x00> = BFC0;
 MMU_E<PROGMEM+0x00> = TF16C0; // First pass of column transforms
 MMU_A<PROGMEM+0x00> = INC; // RBF0 on column because of MODE &
MASTEROFFINC
 //MMU_B<LATENCY+0x00> = GETLATENCY(BFLY16)+3;
 // GETLATENCY(BFLY16)+3 = 224+3 = 0x0E3 =00001 1100011 = 1 0x63
 MMU_B<EXTFEAT+0x00> = 0x01;
 MMU_B<LATENCY+0x00> = 0x63;
 MMU_E<EXTFEAT+0x00> = 0;
 MMU_E<LATENCY+0x00> = READRAM+0x00;
 MMU_A<EXTFEAT+0x00> = 0;
 MMU_A<LATENCY+0x00> = READRAM+0x00;
 MMU_D<PROGMEM+0x00> = NOP;
 MMU_C<PROGMEM+0x00> = NOP;
 MMU_D<EXTFEAT+0x00> = 0;
 MMU_C<EXTFEAT+0x00> = 0;
 MMU_D<LATENCY+0x00> = READRAM+0x00;
 MMU_C<LATENCY+0x00> = READRAM+0x00;

 DSP<FuncCode> = BFLY16;
 DSP<DataFlow> = RAREWB;
 //DSP<XSFISEL> = AUTOBFP;
 //DSP<XSFI> = 0;
 DSP<XSFISEL> = USERBFP;
 DSP<XSFI> = 4;
 DSP<BFPI> = FEEDBACKBFPO;
 YinFile = "256twid.dat";
 //XinFile = "256simprow_o.dat";
 XinFile = "256x256row_o.dat";

STARTPASS;
 MMU_A<MODE> = 0x00; // Turn off RBF0
 MMU_A<MASTERREPEAT> = 0x00000; // Both A & B using N=64k
AFTERPASS;

 MMU_A<PROGMEM+0x00> = BFC12; // BFC4 on column (n= 2^8 x 2^8 matrix =
C4+8)
 MMU_E<PROGMEM+0x00> = TF16C4; // Will repeat each set of 16, 256 times
 MMU_B<PROGMEM+0x00> = BFC12; // BFC4 on column (n= 2^8 x 2^8 matrix =
C4+8)
 //MMU_A<LATENCY+0x00> = GETLATENCY(BFLY16)+3;
 // GETLATENCY(BFLY16)+3 = 224+3 = 0x0E3 =00001 1100011 = 1 0x63
 MMU_A<EXTFEAT+0x00> = 0x01;
 MMU_A<LATENCY+0x00> = 0x63;
 MMU_E<EXTFEAT+0x00> = 0;
 MMU_E<LATENCY+0x00> = READRAM+0x00;
 MMU_B<EXTFEAT+0x00> = 0;
 MMU_B<LATENCY+0x00> = READRAM+0x00;
 MMU_D<PROGMEM+0x00> = NOP;
 MMU_C<PROGMEM+0x00> = NOP;
 MMU_D<EXTFEAT+0x00> = 0;
 MMU_C<EXTFEAT+0x00> = 0;
 MMU_D<LATENCY+0x00> = READRAM+0x00;
 MMU_C<LATENCY+0x00> = READRAM+0x00;

 DSP<FuncCode> = BFLY16;
 DSP<DataFlow> = RBREWA;
 //DSP<XSFISEL> = AUTOBFP;
 DSP<XSFISEL> = USERBFP;
 DSP<XSFI> = 3;
 DSP<BFPI> = FEEDBACKBFPO;
 YinFile = "256twid.dat";
 //OutFile = "256simpo.dat"; // Using 256simpi.dat input and row trans
 //OutFile = "256simpo2.dat"; // Using 256simpi2.dat input and row trans
 OutFile = "256x256o.dat";

STARTPASS;
 MMU_A<N> = 0x00100; // Reset
 MMU_B<N> = 0x00100; // Reset
 MMU_E<N> = 0x00100; // Reset
 MMU_A<MASTEROFFINC> = 0x00100; // Reset
 MMU_A<MASTERREPEAT> = 0x000FF; // Reset
 MMU_B<MASTERREPEAT> = 0x000FF; // Reset
 MMU_E<MASTERREPEAT> = 0x000FF; // Reset
AFTERPASS;

//
// Now Multiply & Inverse Transform = Convolution
//

 //
 // Using the MASTERREPEAT/MASTEROFFINC registers with N set to 256 will
 // require the RBF0 pattern to be run twice. Once on the rows and once
 // on the columns.
 //
 // The Data will always be in the same row,comlumn format.

 //
 // Tranform Rows

 //
 MMU_B<PROGMEM+0x00> = BFC0;
 MMU_E<PROGMEM+0x00> = TF16C0; // To do window, use RBF0...
 MMU_A<PROGMEM+0x00> = RBF0;
 //MMU_B<LATENCY+0x00> = GETLATENCY(BFLY16)+3;
 // GETLATENCY(BFLY16)+3 = 224+3 = 0x0E3 =00001 1100011 = 1 0x63
 MMU_B<EXTFEAT+0x00> = 0x01;
 MMU_B<LATENCY+0x00> = 0x63;
 MMU_E<EXTFEAT+0x00> = 0;
 MMU_E<LATENCY+0x00> = READRAM+0x00;
 MMU_A<EXTFEAT+0x00> = 0;
 MMU_A<LATENCY+0x00> = READRAM+0x00;
 MMU_D<PROGMEM+0x00> = NOP;
 MMU_C<PROGMEM+0x00> = NOP;
 MMU_D<EXTFEAT+0x00> = 0;
 MMU_C<EXTFEAT+0x00> = 0;
 MMU_D<LATENCY+0x00> = READRAM+0x00;
 MMU_C<LATENCY+0x00> = READRAM+0x00;

 DSP<XCI> = 1;
 DSP<FuncCode> = BFLY16;
 //DSP<FuncCode> = VWND16;
 DSP<DataFlow> = RAREWB;
 DSP<XSFISEL> = USERBFP;
 DSP<XSFI> = 0;
 //DSP<BFPI> = 0;
 DSP<BFPI> = BFPCLR;
 YinFile = "256twid.dat";
 //YinFile = "conv256.dat"; // 256 x 1's.
 //XinFile = "256simpo.dat";
 //XinFile = "256simpo2.dat";
 XinFile = "256x256o.dat";

STARTPASS;
AFTERPASS;

 MMU_A<PROGMEM+0x00> = BFC4;
 MMU_E<PROGMEM+0x00> = TF16C4; // re-set N and MASTERREPEAT if modified above
 MMU_B<PROGMEM+0x00> = BFC4;
 //MMU_A<LATENCY+0x00> = GETLATENCY(BFLY16)+3;
 // GETLATENCY(BFLY16)+3 = 224+3 = 0x0E3 =00001 1100011 = 1 0x63
 MMU_A<EXTFEAT+0x00> = 0x01;
 MMU_A<LATENCY+0x00> = 0x63;
 MMU_E<EXTFEAT+0x00> = 0;
 MMU_E<LATENCY+0x00> = READRAM+0x00;
 MMU_B<EXTFEAT+0x00> = 0;
 MMU_B<LATENCY+0x00> = READRAM+0x00;
 MMU_D<PROGMEM+0x00> = NOP;
 MMU_C<PROGMEM+0x00> = NOP;
 MMU_D<EXTFEAT+0x00> = 0;
 MMU_C<EXTFEAT+0x00> = 0;
 MMU_D<LATENCY+0x00> = READRAM+0x00;
 MMU_C<LATENCY+0x00> = READRAM+0x00;

 DSP<FuncCode> = BFLY16;
 DSP<DataFlow> = RBREWA;
 //DSP<XSFISEL> = AUTOBFP;
 DSP<XSFISEL> = USERBFP;
 DSP<XSFI> = 1;
 DSP<BFPI> = FEEDBACKBFPO;
 YinFile = "256twid.dat";

STARTPASS;
AFTERPASS;

 // Setting mode bit-2 will turn on the bit-reverse logic, and
 // Setting N will determine the justification.
 // By setting N larger than the actual increment length
 // the bit position can be manipulated to put the bit
 // reverse in the column bits, thus performing a bit
 // reverse accross the column.
 //
 // Exp. For an 8x8 matrix that we want to bit-reverse successive
 // columns.
 //
 // Run INC address pattern
 // Registers = MODE=4, N=64,
 // ADRSTART=0, ADRINC=1, ADRLENGTH=8,
 // MASTEROFFSET=0, MASTEROFFINC=1, MASTERREPEAT=7
 //
 //00000 00020 00010 00030 00008 00028 00018 00038
 //00001 00021 00011 00031 00009 00029 00019 00039
 //00002 00022 00012 00032 0000A 0002A 0001A 0003A
 //00003 00023 00013 00033 0000B 0002B 0001B 0003B
 //00004 00024 00014 00034 0000C 0002C 0001C 0003C
 //00005 00025 00015 00035 0000D 0002D 0001D 0003D
 //00006 00026 00016 00036 0000E 0002E 0001E 0003E
 //00007 00027 00017 00037 0000F 0002F 0001F 0003F

 //
 // Tranform Columns
 //
 MMU_A<MODE> = 0x04; // Turn INC into a shifted (by N) RBF0

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

 Table 2.0 (Cont.) Simple. Quick Register Programming for 2-D and 3-D Image and Signal Processing

AF04-020

42

 MMU_A<MASTEROFFINC> = 0x00001; // Increment through columns
 MMU_A<N> = 0x10000; // Put 8-bit INC into upper 16-bits
 MMU_B<N> = 0x10000; // Use Bfly pattern on output
 MMU_B<MASTERREPEAT> = 0x00000; // (could also use DUALINC)
 MMU_E<N> = 0x10000; // NOTE: MEMSIZE still = 256
 MMU_E<MASTERREPEAT> = 0x00000;

 // Now transform the columns.
 MMU_B<PROGMEM+0x00> = BFC8; // BFC0 on column (n= 2^8 x 2^8 matrix = C0+8)
 MMU_E<PROGMEM+0x00> = TF16C0; // First pass of column transforms
 MMU_A<PROGMEM+0x00> = INC; // RBF0 on column because of MODE &
MASTEROFFINC
 //MMU_B<LATENCY+0x00> = GETLATENCY(BFLY16)+3;
 // GETLATENCY(BFLY16)+3 = 224+3 = 0x0E3 =00001 1100011 = 1 0x63
 MMU_B<EXTFEAT+0x00> = 0x01;
 MMU_B<LATENCY+0x00> = 0x63;
 MMU_E<EXTFEAT+0x00> = 0;
 MMU_E<LATENCY+0x00> = READRAM+0x00;
 MMU_A<EXTFEAT+0x00> = 0;
 MMU_A<LATENCY+0x00> = READRAM+0x00;
 MMU_D<PROGMEM+0x00> = NOP;
 MMU_C<PROGMEM+0x00> = NOP;
 MMU_D<EXTFEAT+0x00> = 0;
 MMU_C<EXTFEAT+0x00> = 0;
 MMU_D<LATENCY+0x00> = READRAM+0x00;
 MMU_C<LATENCY+0x00> = READRAM+0x00;

 DSP<FuncCode> = BFLY16;
 DSP<DataFlow> = RAREWB;
 //DSP<XSFISEL> = AUTOBFP;
 //DSP<XSFI> = 0;
 DSP<XSFISEL> = USERBFP;
 DSP<XSFI> = 0;
 DSP<BFPI> = FEEDBACKBFPO;
 YinFile = "256twid.dat";

STARTPASS;
 MMU_A<MODE> = 0x00; // Turn off RBF0
 MMU_A<MASTERREPEAT> = 0x00000; // Both A & B using N=64k
AFTERPASS;

 MMU_A<PROGMEM+0x00> = BFC12; // BFC4 on column (n= 2^8 x 2^8 matrix = C4+8)
 MMU_E<PROGMEM+0x00> = TF16C4; // Will repeat each set of 16, 256 times
 MMU_B<PROGMEM+0x00> = BFC12; // BFC4 on column (n= 2^8 x 2^8 matrix = C4+8)
 //MMU_A<LATENCY+0x00> = GETLATENCY(BFLY16)+3;
 // GETLATENCY(BFLY16)+3 = 224+3 = 0x0E3 =00001 1100011 = 1 0x63
 MMU_A<EXTFEAT+0x00> = 0x01;
 MMU_A<LATENCY+0x00> = 0x63;
 MMU_E<EXTFEAT+0x00> = 0;
 MMU_E<LATENCY+0x00> = READRAM+0x00;
 MMU_B<EXTFEAT+0x00> = 0;
 MMU_B<LATENCY+0x00> = READRAM+0x00;
 MMU_D<PROGMEM+0x00> = NOP;
 MMU_C<PROGMEM+0x00> = NOP;
 MMU_D<EXTFEAT+0x00> = 0;
 MMU_C<EXTFEAT+0x00> = 0;
 MMU_D<LATENCY+0x00> = READRAM+0x00;
 MMU_C<LATENCY+0x00> = READRAM+0x00;

 DSP<DOCI> = 1;
 DSP<FuncCode> = BFLY16;
 DSP<DataFlow> = RBREWA;
 //DSP<XSFISEL> = AUTOBFP;
 DSP<XSFISEL> = USERBFP;
 DSP<XSFI> = 0;
 DSP<BFPI> = FEEDBACKBFPO;
 YinFile = "256twid.dat";
 //OutFile = "256simp_conv.dat";
 //OutFile = "256simpi2.dat";
 //OutFile = "256x256i.dat";
 OutFile = "256x256_conv.dat";

STARTPASS;
 MMU_A<N> = 0x00100; // Reset
 MMU_B<N> = 0x00100; // Reset
 MMU_E<N> = 0x00100; // Reset
 MMU_A<MASTEROFFINC> = 0x00100; // Reset
 MMU_A<MASTERREPEAT> = 0x000FF; // Reset
 MMU_B<MASTERREPEAT> = 0x000FF; // Reset
 MMU_E<MASTERREPEAT> = 0x000FF; // Reset
AFTERPASS;

END;

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

This code can be dynamically modified to do 1024 x
1024 or even 1024x1024x1024, even by the on-chip
ARM processor.

AF04-020

 Table 2.0 (Cont.) Simple. Quick Register Programming for 2-D and 3-D Image and Signal Processing

43

Phase 1 Objective (11.) Investigate how efficiently applications such as polyphase channelization, SAR radar,
GMTI radar, wideband communications, and the vision systems, can be performed by the proposed architecture.

As an alternative to register programming as show on the last three pages, the TCSP compiler has been upgraded to
perform command line high level programming for quick "what if" processing. The following illustrates this new code
for a 1K complex FFT:

@REM Do 1k FFT

@REM Pass 1

tcsp RBF0 N=1024 DIGITREV=0xFFC00 IN.MMU

tcsp MXTF32 PASTRADIX=1 FUTURERADIX=32 MEMSIZE=1024 MEMSIZE_DIV_CUR_PASTRADIX=32 COEF.MMU

tcsp MXBF32 PASTRADIX=1 FUTURERADIX=32 OUT.MMU

tcsp BFLY32 3 IN.MMU 1KPASS1I.DAT COEF.MMU 1KSINCOS.DAT OUT.MMU 1KPASS1O.DAT

@REM Pass 2

tcsp MXBF32 PASTRADIX=32 FUTURERADIX=1 IN.MMU

tcsp MXTF32 PASTRADIX=32 FUTURERADIX=1 MEMSIZE=1024 MEMSIZE_DIV_CUR_PASTRADIX=1 COEF.MMU

tcsp MXBF32 PASTRADIX=32 FUTURERADIX=1 OUT.MMU

tcsp BFLY32 3 IN.MMU 1KPASS1O.DAT COEF.MMU 1KSINCOS.DAT OUT.MMU 1KPASS2O.DAT

:end

AF04-020

44

To demonstrate the flexibility of the TCSP chip to effectively process images as 2-D signals, image deconvolution
will be coded using the 2-D processing discussed earler in this report. Image deconvolution could be a powerful tool
in the processing of Radar signals to remove noise and clutter before transmission directly to the war fighter.

The blurred image of Figure 52.0 is convolved against a point spread function, such as the one illustrated in Figure
53.0. There are several simple algorithms for picking this initial PSF and in Radar information about the the nature
of the noise and clutter.

Figure 52.0 Blurred Image Figure 53.0 Point Spread Function PSF

Figure 54.0 Restored Image and Restored PSF

Figure 54.0 shows the restored image and PSF. Note the undesirable "ringing" around the sharp intensity contrast
areas.

Phase 1 Objective (12.) Determine how well the proposed architecture will scale when applied to larger applications.
Determine whether it will offer the economy of scale necessary to reduce the power and mass of future spacecraft
or weapon systems and reduce the ongoing cost of point solution ASICs.

As an insight to how the TCSP could be applied to a high end demanding application such as Space Based Radar,
consider that the TCSP, or TCSP's cascaded, can rapidly be configured to perform the following sequentially or
concurrently:

Fast convolution for pulse compression

Short time FFT for Doppler tracking

Polyphase filter banks for beamforming

Coefficient adaptation for STAP

And the following illustrates high resolution image blind deconvolution, a algorithm for reducing noise and clutter in
realtime Radar images

AF04-020

45

Phase 1 Objective (12.) Determine how well the proposed architecture will scale when applied to larger applications.
Determine whether it will offer the economy of scale necessary to reduce the power and mass of future spacecraft
or weapon systems and reduce the ongoing cost of point solution ASICs.

By zeroing out the high contract areas, i.e. replacing them with zeros, as shown in Figure 55.0 a new weighted array
is created and the deconvolution is rerun.
Figure 56.0 illustrated the reran convolution and the newly constructed PSF. Notice the improvement in the "ringing".

Having the flexibility in the TCSP to not only perform all the realtime requirements of Space Based Radar, but to also
enhance the resulting image would be a significant plus for any on-board processor.

Figure 55.0 Newly Created Array

Figure 56.0 Deblurred Image and its PSF

AF04-020

46

Phase 1 Objective (12.) Determine how well the proposed architecture will scale when applied to larger applications.
Determine whether it will offer the economy of scale necessary to reduce the power and mass of future spacecraft
or weapon systems and reduce the ongoing cost of point solution ASICs.

AF04-020AF04-020

Table 3.0 Sample TCSP Primitive Benchmarks (Sustained)

300 MHz Operation

32-Bit Real + 32-Bit Imaginary
 or 32 Bit Floating Point Real + 32 Float Imag

FFTs with complex inputs:

16 to 256 points 300 Complex MSPS

512 to 64K points 150 Complex MSPS

128K to 16 Mega points 100 Complex MSPS

FFTs with real inputs:

32 to 512 points 600 Real MSPS

1K to 128K points 300 Real MSPS

256K to 32 Mega points 200 Real MSPS

FIRs and Matrix Multiplies

300 MHz Operation

16-Bit Real + 16-Bit Imaginary Block Floating
 Point

FFTs with complex inputs:

16 to 256 points 600 Complex MSPS

512 to 64K points 300 Complex MSPS

128K to 16 Mega points 200 Complex MSPS

FFTs with real inputs:

32 to 512 points 1200 Real MSPS

1K to 128K points 600 Real MSPS

256K to 32 Mega points 400 Real MSPS

300 MHz Operation

 32-Bit Real + 32-Bit Imaginary

 0.1875 nSec/Tap Complex

 0.0937 nSec/Tap Real

 16-Bit Real + 16-Bit Imaginary

 0.0937 nSec/Tap Complex

 0.042 nSec/Tap Real

FFT

500 MHz Operation

FFTs with complex inputs:

16 to 256 points 500 Complex MSPS

512 to 64K points 250 Complex MSPS

128K to 16 Mega points 167 Complex MSPS

FFTs with real inputs:

32 to 512 points 1000 Real MSPS

1K to 128K points 500 Real MSPS

256K to 32 Mega points 333 Real MSPS

500 MHz Operation

FFTs with complex inputs:

16 to 256 points 1000 Complex MSPS

512 to 64K points 500 Complex MSPS

128K to 16 Mega points 333 Complex MSPS

FFTs with real inputs:

32 to 512 points 2000 Real MSPS

1K to 128K points 1000 Real MSPS

256K to 32 Mega points 667 Real MSPS

32-Bit Real + 32-Bit Imaginary
 or 32 Bit Floating Point Real + 32 Float Imag

16-Bit Real + 16-Bit Imaginary Block Floating
 Point

Magnitude square/accumulate

FIRs and Matrix Multiplies
500 MHz Operation

 32-Bit Real + 32-Bit Imaginary

 0.1125 nSec/Tap Complex

 0.056 nSec/Tap Real

 16-Bit Real + 16-Bit Imaginary

 0.056 nSec/Tap Complex

 0.028 nSec/Tap Real

32-bit 0.1875 nSec

16-bit 0.094 nSec

Magnitude square/accumulate

32-bit 0.1125 nSec

16-bit 0.056 nSec

Note: If final chip runs faster, then all benchmarks scale up proportionally, i.e. @ 600 MHz 512 FFT at 2400 MSPS
Also, 16-bit rates are for 8-bit data typedoubled

47

Table 3.0 displays some of the more common TCSP digital signal processing benchmarks.

Phase 1 Objective (13.) Investigate chip design techniques and tools that are good candidates to allow the
proposed architecture to achieve the maximum performance/watt.

Some of the many techniques the TCSP uses to save power are presented here.

The TCSP is a static design with synchronous interfaces, this allows for robust clock control to manage the all
important power dissipation. As with most electronic applications it's not just the processor's power dissipation that
limits the performance, but the board hardware as a whole.
DSPA has engineered internal clock management into the TCSP to minimize power requirements for each function
being performed. Circuits are turned off when not required and zero's are inserted into data paths that cannot be
clock controlled.

Additionally, as shown in Figure 57.0 there are many opportunities in performing complex and real only FFT
butterflies to use an add instead of a multiply. An add dissipates much less power than a multiply. In this simplified
example, of the twelve butterflies required to do a 8 point complex FFT, seven of them are just adds, that's over half!
The TCSP uses this concept extensively throughout the chip, it is especially important for the higher radix processes.

x(0)

x(4)

0W 8

0
W 8

0
W 8

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

2
W 8

0
W 8

1
W 8

2
W 8

3
W 8

2
W 8

0
W 8

0
W 8

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

STAGE 1 STAGE 2 STAGE 3

0
W 8

Xk(a)
1

1

1

-1

W
r
N

+

+XXk

X

(b)

k+1(a)

Xk+1(b)

1

1

1

-1

+

+

1
x(n) =

N

N−1
∗ X (k)∑ =k 0

 WN

kn

∗
for n = 0, 1, … ,N−1

k π−j2 k/N =NW e

1

1

1

-1

+

+

1

1

1

-1

+

+

1

1

1

-1

+

+

1

1

1

+

+-1

1

1

1

+

+-1

1

1

1

+

+-1

1

1

1

+

+-1

=cos(2πk/N)-j sin(2πk/N)

1

1

1

+

+-1

1

1

+

1
1

+

1

1

+

1

+-1

1

+-1

1

+-1

a+jb
c+jd

2
ac +jbc +jad = j bd

ac-bd +j (bc+ad)

0

1

2

3

4

5

6

7

x(0)- x(4)(cos(2π0/8)-j sin(2π0/8)= x(0) - x(4)(cos(0)-jsin(0))
= x(0) -x(4)(1-jo) = x(0)-x(4)

0 1 01

= x(2) -x(6)(1-jo) = x(2)-x(6)

= x(3) -x(7)(1-jo) = x(3)-x(7)

= x(1) -x(5)(1-jo) = x(1)-x(5)

x(2)- x(6) (cos(2π2/8)-j sin(2π2/8))

x(2)- x(6) (cos(2π2/8)-j sin(2π2/8))
+ x(0)-x(4)

Figure 57.0 Eight Point Complex FFT

AF04-020

48

Phase 1 Objective (13.) Investigate chip design techniques and tools that are good candidates to allow the
proposed architecture to achieve the maximum performance/watt.

Control

Clk

Logic

Clk

Pipelines

Input Output
Clk

Figure 58.0 Pipelined Logic
Another power saving technique DSPA uses in the TCSP is to
stack the data when possible and run it through the data path and
FPGA fabric as a continuous stream of data until the functions
applied on the data need to be changed.
Figure 58.0 illustrates a pipeline and it's control, This "stacking"
reduces processing latency by stacking smaller transform and
thereby forming a larger array of vectors to be passed through
the chips main processing section. As illustrated, the logic of a
pipelined processor is configured for the needed functionality as
dictated by the control. This control is fixed as the processor
performs necessary logic functions at each stage through the
pipeline. When this control is changed to allow the logic to perform a new function, the data in the pipeline is
rendered useless, this requires the processor to wait until the last word of data is out of the pipeline before it can
start a new function.
As an example, if a particular algorithm requires 2048 point complex transforms to be performed and the TCSP has 64K
words of internal or external working memory, 32 of these 2048 point complex arrays can be stacked to form a single
64K array. Our proposed TCSP would perform a radix-256 FFT function on the whole 64K point array, followed by a
radix-8 function. In this way, the TCSP had to wait just one time for the pipeline to clear, i.e. when the control was
switched to the radix-8 function. Otherwise, the TCSP would have had to wait 32 times for the pipeline to clear, as it
switched from the radix-256 to the radix-8 for each of the thirty-two 2048 point transforms.

In 2-D and 3-D applications this power savings is multiplied.

64

64

128

128

256

256

512

512

1024

1024

N
2

2
N x (log N)

Number of Sample Points

N
u

m
b

e
r

o
f
M

u
lti

p
lic

a
tio

n
s

(x
1

0
0

0
)

2Figure 59.0 N vs N(Log (N))2With the TCSP being a FFT centered processor, the architecture of the chip
is optimized to smoothly move applications to the efficiencies of the
frequency domain. Figure 59.0 shows the reduction in operations. Almost all
image and signal processing applications are good candidates for the
frequency domain.
FIR filters can be performed efficiently with FFT based fast convolution
when the impulse response is greater than just a dozen points.

AF04-020

49

Phase 1 Objective (13.) Investigate chip design techniques and tools that are good candidates to allow the
proposed architecture to achieve the maximum performance/watt.

FFTFFT
-1

PASS 1

BFLY4

PASS 2

BFLY4

PASS 3

BFLY4

PASS 4

BWND4

PASS 6

BFLY4

PASS 5

BFLY4

1

0

2
3
4

5

6
7
8

9

10
11
12
13

14
15
16

17

18
19
20

21

22
23
24

25

26
27
28
29

30
31
32
33

34
35
36

37

38
39
40

41

42
43
44
45

46
47
48
49

50
51
52
53

54
55
56

57

58
59
60
61

62
63

16

0

32
48
4

20

36
52
8

24

40
56
12

28

44
60

1

17

33
49
5

21

27
53
9

25

41
57
13

29

45
61
2

18

34
50
6

22

38
54
10

26

42
58
14

30

46
62
3

19

35
51
7

23

39
55
11

27

43
59
15

31

47
63

1

0

2
3
4

5

6
7
8

9

10
11
12
13

14
15
16

17

18
19
20

21

22
23
24

25

26
27
28
29

30
31
32
33

34
35
36

37

38
39
40

41

42
43
44
45

46
47
48
49

50
51
52
53

54
55
56

57

58
59
60
61

62
63

16

0

32
48
4

20

36
52
8

24

40
56
12

28

44
60

1

17

33
49
5

21

27
53
9

25

41
57
13

29

45
61
2

18

34
50
6

22

38
54
10

26

42
58
14

30

46
62
3

19

35
51
7

23

39
55
11

27

43
59
15

31

47
63

first pass on inverse FFT
includes the filter response multiply

first pass on FFT includes the
window multiply, if any.

Figure 60.0 Free Window Multiply and Free Coefficient Multiply on Fast Convolution

Another power saving technique used in the TCSP is taking advantage of the fact that the decimation in time FFT
algorithm has a first pass multiply by 1, instead of a twiddle factor that the decimation in frequency algorithm does.

Figure 60.0 illustrates the previous fast convolution Radar matched filtering algorithm. The window multiply on the first
pass of the FFT is injected in place of the complex 1.
And, the multiply against the filter coefficients on the inverse transform is also free.

A high radix machine like the TCSP is able to perform a 256x256= 64K transform with just 2 passes. If a window pass
and filter multiply pass had to be performed, then a 64K transform would take four passes, this reduces power
consumption.

Additionally, DSPA has studied several chip design tools and converged on using a novel suite of power optimizing
tools from Alternative System Concepts Inc. of Windham, NH. (www.ascinc.com)

AF04-020

50

Risk
Concerns

Figure 61.0 Risk Matrix

Confidences

rFPGA

Number of
useable gates
questionable

30K gates still
makes TCSP
very viable

Total Chip

Ambitious
by any

standard

Advanced tools +
DSPA team has

excellent big chip
record

8 Mega-bit
Memory

Essentially a
custom

analog design

Honeywell and
BAE are

memory experts

DSP

Architecture
sectionalized for

success

ARM

Medium HighLow

DSPA team
has experience

with ARM
Not DSP

Figure 61.0 above, attempts to gauge the TCSP program risks. The TCSP is entirely feasible with upcoming 0.15
micron rad hard processes.

The TCSP simulator is complete and as shown, been used to demonstrate several high end algorithms and
applications. The TCSP VHDL is set up and ready to go, pending funding.

Both Honeywell and BAE 0.15 micron rad hard cell libraries are about ready. If funded soon, by the time the VHDL is
designed, the library (either Honeywell or BAE) would be mature enough to start chip layout.

Application library needs to be aggressively pursued across a wide base of DoD and NASA programs.

Conclusion - Aggressive chip architecture developed with a solid evolutionary history. As shown, the TCSP
hardware and software will efficiently scale to any future chip process. A 90 nm process would enable a Radix-512
FFT on-chip structure, 32 Megabits of on-chip memory, a much larger on-chip FPGA fabric, and a more sophisticated
on-chip ARM microprocessor.

Demanding
system level

features

Element

AF04-020

51

DISTRIBUTION LIST

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 1 cy

AFRL/VSIL
Kirtland AFB, NM 87117-5776 1 cy

AFRL/VSIH
Kirtland AFB, NM 87117-5776 1 cy

Digital Signal Processing
Architectures Inc.
10306 NE 85th Circle
Vancouver, WA 98662 1 cy

Official Record Copy
AFRL/VSSE, Lt. Casey McCoy 1 cy

 5522

	front matter2005-1045.pdf
	Final Report

	front matter2005-1045.pdf
	Final Report

